
Acquisition and Visualization of
Surface Light Fields

SIGGRAPH 2001 Course 46 Notes

Organizer

Radek Grzeszczuk
Intel Corporation

Lecturers

Jean-Yves Bouguet Leonard McMillan
Intel Corporation Massachusetts Institute of Technology

Marc Pollefeys Yizhou Yu
Katholieke Universiteit Leuven University of Illinois at Urbana Champaign

Daniel Wood Hanspeter Pfister
University of Washington Mitsubishi Electric Research Lab

Yoichi Sato Radek Grzeszczuk
University of Tokyo Intel Corporation

Abstract

Light fields parameterized on the geometry of an object offer a natural and intuitive description of complex
radiance data. Unfortunately, acquisition, efficient representation, and fast rendering of surface light fields
pose many problems. The course demonstrates several practical methods for registering the radiance data
of physical objects with their geometry and introduces different methods for efficient representation and
visualization of surface light fields. This course presents several interactive surface light field viewers,
including one that uses hardware-acceleration to render complex scenes with multiple surface light fields at
interactive frame rates.

Topics include geometry reconstruction, registration of image data with geometry, acquisition of light field
data, recovery of reflectance models from photographs, compression and synthesis of reflectance data, sur-
face light field representations, hardware-accelerated rendering of surface light fields, and surface light fields
for computer games.

1

Contents

Abstract : 1
Lecturer Biographies : 4
Lecturer Contact Information : 7
Course Introduction and Overview : 8
Course Schedule : 11

Session 1: Basic Techniques of Acquiring Surface Light Fields — Jean-Yves Bouguet

Slides: “Acquisition of Surface Light Fields”
J-Y. Bouguet

Paper: “Better optical triangulation through spacetime analysis”
B. Curless, M. Levoy

Paper: “3D Photography using Shadows in Dual-space Geometry”
J-Y. Bouguet, P. Perona

Paper: “A Volumetric Method for Building Complex Models from Range Images”
B. Curless, M. Levoy

Session 2: 3D Scanning Using the Image-Based Visual Hull — Leonard McMillan

Slides: “Image-Based Visual Hulls: Shape and Texture in a Single Low-Cost Package”
L. McMillan

Paper: “Image-Based Visual Hulls”
W. Matusik, C. Buehler, R. Raskar, S. Gortler, L. McMillan

Paper: “Creating and Rendering Image-Based Visual Hulls”
C. Buehler, W. Matusik, L. McMillan, S. Gortler

Session 3: Acquisition of Light Field Data using Hand-Held Camera — Marc Pollefeys

Slides: “Acquisition of Light Field Data using a Hand-Held Camera”
M. Pollefeys

Paper: “Calibration of Hand-held Camera Sequences for Plenoptic Modeling”
R. Koch, M. Pollefeys, B. Heigl, L. Van Gool and H. Niemann

Paper: “Visual Modeling with a Hand-held Camera”
M. Pollefeys, L. Van Gool, M. Vergauwen, F. Verbiest, K. Cornelis, J. Tops, R. Koch

Session 4: Recovering Reflectance Models of Real Scenes from Photographs — Yizhou Yu

Slides: “Recovering and Synthesizing Lighting Independent Appearance Models from Images”
Y. Yu

“Inverse Global Illumination: Recovering Reflectance Models of Real Scenes from Photographs”
Y. Yu, P. Debevec, J. Malik, and T. Hawkins

Paper: “Extracting Objects from Range and Radiance Images”
Y. Yu, A. Ferencz, and J. Malik

Paper: “Synthesizing Bidirectional Texture Functions for Real-World Surfaces”
X. Liu, Y. Yu, and H. Shum

2

Session 5: Surface Light Fields for 3D Photography — Daniel Wood

Slides: “Slides Title”
List of Authors

Paper: “Surface Light Fields for 3D Photography”
D. Wood, D. Azuma, K. Aldinger, B. Curless, T. Duchamp, D. Salesin, W. Stuetzle

Session 6: Point-sample Rendering for Visualization of Surface Light Fields — Hanspeter Pfister

Slides: “Point-Sample Rendering for the Visualization of Surface Lightfields”
H. Pfister

Paper: “Surface Splatting”
M. Zwicker, H. Pfister, J. van Baar, M. Gross

Paper: “Surfels - Surface Elements as Rendering Primitives”
H. Pfister, M. Zwicker, J. van Baar, M. Gross

Session 7: Eigen-Texture Method for Compression and Synthesis of Reflectance Data — Yoichi Sato

Slides: “Paper Title”
List of Authors

Paper: “Object Shape and Reflectance Modeling from Observation”
Y. Sato, M. D. Wheeler, K. Ikeuchi

Paper: “Eigen-texture Method: Appearance Compression based on 3D Model”
K. Nishino, Y. Sato, K. Ikeuchi

Session 8: Hardware-Accelerated Rendering of Surface Light Fields — Radek Grzeszczuk

Slides: “Hardware-accelerated Rendering of Surface Light Fields”
R. Grzeszczuk

Notes: “Light Field Mapping: Hardware-Accelerated Rendering of Surface Light Fields”
W-C. Chen, R. Grzeszczuk, J-Y. Bouguet

Paper: “The Lumigraph”
S. Gortler, R. Grzeszczuk, R. Szeliski, M. Cohen

3

Lecturer Biographies

Jean-Yves Bouguet is a Senior Researcher at Intel’s Microprocessor Research Labs since 1999. He re-
ceived his diplome d’ingenieur from the Ecole Superieure d’Ingenieurs en Electrotechnique et Electronique
(ESIEE, Paris) in 1994 and the M.S. and Ph.D. degrees in Electrical Engineering from the California In-
stitute of Technology (Caltech) in 1994 and 1999, respectively. His research interests cover all computer
vision techniques (passive and active) for capturing the three-dimensional structure of real scenes. During
his thesis work, he has developed a simple and inexpensive method for scanning objects using shadows.
This work was first presented at ICCV’98 and a patent is pending on that invention. Recently, Jean-Yves’
work focused on developing modeling techniques that combine 3D geometry capture and scene reflectance
acquisition for realistic rendering of real and synthetic scenes with complex shape and surface characteris-
tics. Jean-Yves has received a number of distinctive awards including the J. Walker von Brimer award for
”extraordinary accomplishments in the field of 3D photography”. He also collaborated with Prof. Jim Arvo,
Prof. Peter Schroder and Prof. Pietro Perona in teaching a graduate level course on 3D photography from
1996 to 1998 at Caltech. Jean-Yves also contributed to the 3D photography course offered at SIGGRAPH
1999 and 2000 with Prof. Brian Curless, Prof. Steve Seitz, Dr Paul Debevec, Prof. Marc Levoy and Prof.
Shree Nayar.

Leonard McMillan is a pioneer in the area of image-based rendering. Image-based rendering (IBR) is a
new approach to computer graphics in which scenes are modeled using a collection of reference images.
These reference images can then be used to synthesize new renderings from a wide range of viewing po-
sitions. He has worked a wide range of different approaches to IBR including warping images with depth,
light field rendering, and generating view-dependent models directly from live video streams. Leonard is
also interested in a wide range of related topics including three-dimension display technologies, computer
graphics hardware, and the fusion of image processing, multimedia, and computer graphics.

Leonard is an Assistant Professor in the EECS Department and a member of the Computer Graphics Group
of the Laboratory for Computer Science at MIT. Leonard received his BSEE and MSEE from Georgia
Institute of Technology and his Ph.D. from the University of North Carolina at Chapel Hill. He has also
worked at Bell Laboratories and Sun Microsystems.

Marc Pollefeys is a Postdoctoral Researcher in the ESAT-PSI group of the K.U.Leuven, one of the largest
computer vision groups in Europe. In May 1999 he received his Ph.D. with highest honors. His dissertation
on Self-calibration and Metric 3D Reconstruction from Uncalibrated Image Sequences was awarded the
Scientific Prize BARCO. His current research focuses on 3D modeling from images, multi-view geometry,
plenoptic modeling, virtual and augmented reality and applications. He is currently involved in projects
ranging from digital archaeology to planetary rover control. Marc Pollefeys has written over 40 technical
papers and won several awards, amongst which the prestigious Marr Prize at the International Conference
on Computer Vision in 1998. He has organized the SIGGRAPH 2000 course on “Obtaining 3D models with
a hand-held camera” and a similar course at the European Conference on Computer Vision.

4

Yizhou Yu is currently an assistant professor in the Department of Computer Science at University of Illinois
at Urbana Champaign. He received his Ph.D. in Computer Science from UC Berkeley in 2000. His PhD
thesis research is on image-based modeling and rendering of photometric properties, and was under the
direction of professor Jitendra Malik. He also holds a M.S. degree in applied mathematics from State Key
Laboratory of CAD and Graphics at Zhejiang University, China. He has done a considerable amount of
research in computer graphics and vision including image-based modeling and rendering, texture mapping,
visibility processing, radiosity and global illumination. He contributed to SIGGRAPH in the past four
years as papers’ coauthor, course organizer, and electronic theater contributor. He is a recipient of 1998
Microsoft Graduate Fellowship, and was an intern researcher at Microsoft Research Graphics Group during
summer 1998, where he worked on modeling and recovering photometric properties of human faces with
Brian Guenter. He is currently teaching a graduate level course on image-based modeling and rendering at
UIUC, and has been the speaker of a number of paper and course presentations, including presentations at
SIGGRAPH’2000, SIGGRAPH’99, SIGGRAPH’98, and IEEE Visualization’99.

Hanspeter Pfister is a Research Scientist at MERL - A Mitsubishi Electric Research Laboratory in Cam-
bridge, MA. He is the chief architect of VolumePro, Mitsubishi Electric’s real-time volume rendering system
for PC-class computers. His research interests include computer graphics, scientific visualization, computer
architecture, and VLSI design. Hanspeter Pfister received his PhD in Computer Science in 1996 from the
State University of New York at Stony Brook. In his doctoral research he developed Cube-4, a scalable
architecture for real-time volume rendering. He received his Dipl.-Ing. degree in electrical engineering
from the Department of Electrical Engineering at the Swiss Federal Institute of Technology (ETH) Zurich in
1991. He is a member of the ACM, IEEE, the IEEE Computer Society, and the Eurographics Association.

Daniel Wood is a PhD candidate at the University of Washington. He received his bachelor’s degree from
the University of California at Berkeley in 1995, and his M.S. from the University of Washington in 1997.
His dissertation topic is ”Surface Light Fields for 3D Photography”, and his advisor is Brian Curless. In
a SIGGRAPH 2000 paper (also called ”Surface Light Fields for 3D Photography”), he and his co-authors
described methods for efficiently representing and rendering shiny objects given scanned geometry and
photographs. His continuing research focuses on increasing the ease of capturing surface light fields of real
objects. His anticipated graduation date is in the summer of 2001. While in graduate school, he received a
NSF graduate fellowship and an Intel PhD fellowship. Previous research interests include facial animation
and computer tools for traditional cel animators.

Yoichi Sato is an associate professor at the Institute of Industrial Science, the University of Tokyo, Tokyo,
Japan. He received a BS in Mechanical Engineering from the University of Tokyo in 1990. He received a MS
in Robotics in 1993 and a PhD in Robotics from the School of Computer Science, Carnegie Mellon Univer-
sity in 1997. His primary research interests are computer vision (physics-based computer vision, reflectance
analysis for 3D object model generation), computer graphics (virtual reality and augmented reality) and
human-computer interaction. He has presented his work at a number of conferences and transactions both
in the field of computer vision and human-computer interaction including SIGGRAPH97, SIGCHI2000,
IEEE Trans. Visualization and CG (1999), J. Optical Society of America A(1994, 1999), ICCV (1998,
1999), CVPR (1993, 1999), and IEEE VR2001. He currently serves as an editorial manager and an editor
of several computer vision transactions in Japan. He also has actively participated in several international
conferences and symposiums as an organizing committee member and a program committee member.

5

Radek Grzeszczuk joined Intel’s Microprocessor Research Labs in 1998 as a Senior Researcher. He re-
ceived his Ph.D. degree (1998) and his M.S. degree (1994) in Computer Science from the University of
Toronto. His PhD thesis research was done under the supervision of Demetri Terzopoulos and Geoffrey
Hinton and focused on using neural networks for fast emulation and control of physics-based models. The
results of this work were published at SIGGRAPH’98 and NIPS’98. Radek Grzeszczuk’s pioneering re-
search with Stephen Gortler, Michael Cohen and Richard Szeliski at Microsoft Research Graphics Group
on image-based rendering culminated in the publication of “The Lumigraph” at SIGGRAPH’96. His recent
work on image-based modeling and rendering focuses on methods for efficient representation and visualiza-
tion of complex shape and reflectance properties of objects. He published a number of important scientific
papers, primarily in computer graphics, but also in artificial life, neural networks, and computer vision. He
received an award in 1995 from Ars Electronica, the premier competition for creative work with digital
media, for his work on artificial animals for computer animation and virtual reality.

6

Lecturer Contact Information:

Jean-Yves Bouguet, Senior Researcher, Intel Corporation

Jean-Yves.Bouguet@intel.com
http://www.intel.com/research/mrl/people/bouguet_j.htm

Leonard McMillan, Assistant Professor, Massachusetts Institute of Technology

mcmillan@graphics.lcs.mit.edu
http://www.graphics.lcs.mit.edu/˜mcmillan/

Marc Pollefeys, Postdoctoral Researcher, Katholieke Universiteit Leuven

Marc.Pollefeys@esat.kuleuven.ac.be
http://www.esat.kuleuven.ac.be/˜pollefey

Yizhou Yu, Assistant Professor, University of Illinois at Urbana Champaign

yizhouy@acm.org
http://www.cs.berkeley.edu/˜yyz

Daniel Wood, PhD Candidate, University of Washington

daniel@cs.washington.edu
http://www.cs.washington.edu/homes/daniel

Hanspeter Pfister, Research Scientist, Mitsubishi Electric Research Lab

pfister@merl.com
http://www.merl.com/people/pfister/index.html

Yoichi Sato, Associate Professor, University of Tokyo

ysato@cvl.iis.u-tokyo.ac.jp
http://www.cvl.iis.u-tokyo.ac.jp/˜ysato

Radek Grzeszczuk, Senior Researcher, Intel Corporation

Radek.Grzeszczuk@intel.com
http://www.intel.com/research/mrl/people/grzeszczuk_r.htm

7

Course Introduction and Overview
Radek Grzeszczuk

The techniques discussed in this course suggest that the easiest and most efficient method of repre-
senting radiance properties of an object is in the form of a function defined directly on the geometry
of the object. This approach has some significant advantages over alternative methods. For exam-
ple, geometry-based representation of radiance data leads to higher compression ratios and less
artifacts than purely image-based approaches. Additionally, graphics hardware has been histori-
cally optimized for rendering of geometrical models. By leveraging this hardware, geometry-based
approaches tend to be more efficient.

There is also strong justification for sample-based representation of radiance data. Physically real-
istic parametric reflectance models are difficult to develop and implement efficiently on traditional
graphics hardware. However, radiance data can be sampled easily from the physical world through
image acquisition. Although it is possible to build parametric models of the sampled radiance
data, this is generally a formidable task. A simple way of representing this data is in the form of a
sampled function, such as a texture map. In this course we show examples of a how texture map
representation of radiance data leads to simple and efficient techniques for visualization of surface
light fields.

This course describes several practical techniques for acquiring, representing and rendering sur-
face light fields. It shows that radiance data can be collected using inexpensive, consumer-level
imaging equipment and that the registration of this data with the object can be automated. The
course also shows examples of efficient methods for representing and visualizing surface light
fields. It presents several interactive surface light field viewers, including one that uses hardware-
acceleration to render complex scenes with multiple surface light fields at interactive frame rates.

The topics covered in this course can be divided into two main themes: acquisition of surface
light fields and modeling and rendering of surface light fields. The course sessions are arranged
accordingly, with acquisition covered at the beginning of the day and modeling and rendering
occupying the rest of the day. The course will progress according to the eight sessions summarized
below:

1. Basic Techniques of Acquiring Surface Light Fields (Jean-Yves Bouguet): This segment
of the course will describe practical techniques for acquiring accurate surface light field
data of real life objects. First, I will present a system that captures complete 3D models
of objects. I will address issues such as scanner calibration, image processing, sensitivity
and multiple scans registration. I will then describe a technique for acquiring the appearance
images and aligning them with the 3D model. Finally, I will present an alternative acquisition
technique based on image silhouette extraction that combines the 3D shape computation
with the appearance capture. Although presented in the context of surface light field data
acquisition, this session will cover general topics of geometry computation, passive (camera)

8

and active (projector) device calibration that are of great interest in numerous applications in
machine vision and computer graphics.

2. 3D Scanning Using the Image-Based Visual Hull (Leonard McMillan): This part of
the course presents efficient algorithms for creating and rendering image-based visual hulls.
These algorithms are motivated by our desire to render real-time views of dynamic, real-
world scenes. I will first describe the visual hull, an abstract geometric entity useful for
describing the volumes of objects as determined by their silhouettes. I will then introduce
the image-based visual hull, an efficient representation of an objects visual hull. Finally, I
will present a 3D scanner based on the visual hull representation. The system is low-cost and
offers simple and fast acquisition. In Session 6, Hanspeter Pfister will describe point-sample
rendering of the 3D models acquired using the 3D scanner.

3. Acquisition of Light Field Data using Hand-Held Camera (Marc Pollefeys): This seg-
ment of the course will demostrate how lightfield data can be acquired using a hand-held
camera. The presented approach combines different state-of-the-art algorithms, mainly de-
veloped in the field of computer vision, to automatically retrieve all the necessary data from
the raw images. The approach starts by relating neighboring views based on automatically
extracted features. From this both the motion and the calibration of the camera are com-
puted. In a second stage the surface of the observed scene is also estimated from the images
using a multi-view stereo algorithm. The obtained results can be used to generate different
types of visual models. In particular, we will propose an unstructured lightfield approach
that uses view-dependent geometry approximations.

4. Recovering Reflectance Models of Real Scenes from Photographs (Yizhou Yu): I will
introduce techniques for recovering and synthesizing lighting independent appearance mod-
els including BRDFs, albedo maps, bump maps and BTFs. These techniques allow re-
illumination of real scenes, object insertion/deletion, and rendering of virtual objects dec-
orated with the appearance models. They learn from real images and support the synthesis
of highly realistic imagery from the traditional rendering pipeline. More specifically, I will
review a procedure to recover parametric BRDF models and albedo maps for objects present
in a real mutual illumination environment; an algorithm to segment geometry into individual
objects for manipulation and BRDF fitting; and a technique to synthesize novel BTFs from
a sparse set of images with varying lighting/viewing directions.

5. Surface Light Fields for 3D Photography (Daniel Wood): This segment of the course be-
gins by presenting an overview of different techniques for compressing surface light fields.
The overview will show how the approaches used by the following speakers (among others)
relate to each other. Next techniques for simultaneous estimation and compression of sur-
face light fields of real scenes will be described in greater detail. First presented will be a
simple algorithm for estimating uncompressed surface light fields (pointwise fairing). Then
generalizations of vector quantization and principal component analysis (function quantiza-
tion and principal functional analysis, respectively) will be described. Finally we describe
an interactive software-only rendering algorithm and some editing operations.

9

6. Point-sample Rendering for Visualization of Surface Light Fields (Hanspeter Pfister):
This segment of the course continues the description of the system introduced by Leonard
McMillan is Session 2. Our system builds a point-based 3D model using the image-based
visual hull, upon which it maps a view-dependent radiance function. In this session I will
describe point-sample rendering of the 3D models acquired using the 3D scanner. I will
also talk about several point rendering methods developed to visualize our models. Two
novel screen space filtering techniques, called EWA surface and volume splatting, extend the
mathematics of anisotropic texture mapping to irregularly spaced point samples and voxels.
In this talk I will discuss these approaches and show results from our point-based acquisition
and rendering systems.

7. Eigen-Texture Method for Compression and Synthesis of Reflectance Data (Yoichi Sato):
This segment will demonstrate two different representations of the radiance data. First, I will
overview the model-based method presented in SIGGRAPH 97. This method estimates pa-
rameters of a certain reflection model from measured BRDF samplings. Then I will review
the limitations of the model-based method and introduce the Eigen-Texture method, which
was presented at CVPR’99. This method samples appearances of a real object under various
illumination and viewing conditions, and compresses them in the 2D coordinate system de-
fined on the 3D model surface. Unlike our model-based method, the Eigen-Texture method
can be applied for wide varieties of objects since this method does not assume any parametric
reflectance model.

8. Hardware-Accelerated Rendering of Surface Light Fields (Radek Grzeszczuk): This
segment will show a method for efficient representation and interactive visualization of sur-
face light fields. In particular, we propose to approximate the radiance data by partitioning
it over elementary surface primitives and decomposing each part into a small set of lower-
dimensional discrete functions. We also propose a hardware-accelerated method of ren-
dering from this compact representation that accurately conveys the physical realism of the
original data at interactive frame rates on a personal computer. Finally, we show that our rep-
resentation can be further compressed using standard image compression techniques leading
to extremely compact data sets that are up to four orders of magnitude smaller than the un-
compressed light field data. We demonstrate the approximations for a variety of non-trivial
synthetic scenes and physical objects scanned through 3D photography.

10

Course Schedule

Time Topic Speaker
08:30 Introduction Grzeszczuk
08:45 Basic Techniques of Acquiring Surface Light Fields Bouguet
09:30 3D Scanning Using the Image-Based Visual Hull McMillan
10:00 Break
10:15 Acquisition of Light Field Data using Hand-Held Camera Pollefeys
11:15 Recovering Reflectance Models of Real Scenes from Photographs Yu
12:00 Lunch
13:30 Surface Light Fields for 3D Photography Wood
14:15 Point-sample Rendering for Visualization of Surface Light Fields Pfister
15:00 Break
15:15 Eigen-Texture Method for Compression and Synthesis of Reflectance Data Sato
16:00 Hardware-Accelerated Rendering of Surface Light Fields Grzeszczuk
16:45 Questions & Answers
17:00 Adjourn

11

1

IntroductionIntroduction

Microprocessor Research Labs

Intel Corporation

Microprocessor Research Labs

Intel Corporation

SIGGRAPH 2001 Course on

Acquisition and Visualization of

Surface Light Fields

Radek GrzeszczukRadek Grzeszczuk

Image-based Modeling

and Rendering

Model

2

Properties of Image-based Modeling

and Rendering

• Positive

– Image-based representation of radiance data offers

photorealism

– Data acquisition using imaging devices holds promise

of simple modeling

• Negative

– Small number of input images results in poor model

quality

– Large number of input images leads to difficult to

handle data sets

• Positive

– Image-based representation of radiance data offers

photorealism

– Data acquisition using imaging devices holds promise

of simple modeling

• Negative

– Small number of input images results in poor model

quality

– Large number of input images leads to difficult to

handle data sets

Parameterization of

Light Field

s

t

u

v

u
i

u
i

v
i

v
i

s
i

s
i

t
i

t
i

Front plane

Back plane

3

Definition of Light Field

• Describes radiance of every ray intersecting the

front and the back planes

– intersection of ray with front plane - (u, v)

– intersection of ray with back plane - (s, t)

• Describes radiance of every ray intersecting the

front and the back planes

– intersection of ray with front plane - (u, v)

– intersection of ray with back plane - (s, t)

),,,(),,(tsvufBGRI �),,,(),,(tsvufBGRI �

Example of Light Field

Input data: 256 images of average resolution 256x256.

(Example courtesy of M. Levoy and P. Hanrahan, Stanford)

4

Properties of Light Fields

• Positive

– Geometry reconstruction is not required

– Representation and rendering is simple

– Rendering cost independent from scene complexity

• Negative

– Dense sampling required for good image quality

– Compression difficult due to poor data coherency

– Lack of geometry has disadvantages

• Positive

– Geometry reconstruction is not required

– Representation and rendering is simple

– Rendering cost independent from scene complexity

• Negative

– Dense sampling required for good image quality

– Compression difficult due to poor data coherency

– Lack of geometry has disadvantages

Parameterization of

Surface Light Field

r

s �

�
p
r

p
s

5

Definition of

Surface Light Field

• Describes radiance of every point on the surface

in every viewing direction

– Parameters (r, s) describe surface location

– Parameters (�, �) describe viewing direction

• Describes radiance of every point on the surface

in every viewing direction

– Parameters (r, s) describe surface location

– Parameters (�, �) describe viewing direction

),,,(),,(��srfBGRI �),,,(),,(��srfBGRI �

Example of

Surface Light Field

Input data: 250 images of average resolution 400x300.

6

Properties of

Surface Light Fields

• Positive

– Radiance data exhibits more spatial coherency

– Better compression and quality can be achieved

– Knowing geometry can be helpful in many situations

• Negative

– Geometry reconstruction is required

– Efficient representation is non-trivial

– Rendering speed depends on scene complexity

• Positive

– Radiance data exhibits more spatial coherency

– Better compression and quality can be achieved

– Knowing geometry can be helpful in many situations

• Negative

– Geometry reconstruction is required

– Efficient representation is non-trivial

– Rendering speed depends on scene complexity

Applications of

Surface Light Fields

• 3D Photography

– preserve photorealism of scanned objects

– represent surface details using images

• Realistic computer games

– allow for interactive visualization of physically

realistic synthetic and real environments

– can be easily combined with traditional CG objects

and lighting models

• 3D Photography

– preserve photorealism of scanned objects

– represent surface details using images

• Realistic computer games

– allow for interactive visualization of physically

realistic synthetic and real environments

– can be easily combined with traditional CG objects

and lighting models

7

Surface Light Fields of

Scanned Objects - Examples

Surface Light Fields of

Synthetic Environments - Examples

8

Course Statement

• Practical acquisition is possible

– Simple, inexpensive imaging equipment

– Automatic registration of radiance data

• Efficient representation and rendering

– Compression of surface light fields

– Parametric representation of radiance data

– Point-sampled rendering

– Hardware-accelerated rendering

• Practical acquisition is possible

– Simple, inexpensive imaging equipment

– Automatic registration of radiance data

• Efficient representation and rendering

– Compression of surface light fields

– Parametric representation of radiance data

– Point-sampled rendering

– Hardware-accelerated rendering

Speakers (Morning)

Jean-Yves Bouguet
Intel Corporation

Jean-Yves Bouguet
Intel Corporation

Leonard McMillan

Massachusetts Institute of Technology

Leonard McMillan

Massachusetts Institute of Technology

Marc Pollefeys

Katholieke Universiteit Leuven

Marc Pollefeys

Katholieke Universiteit Leuven

Yizhou Yu
University of Illinois at Urbana Champaign

Yizhou Yu
University of Illinois at Urbana Champaign

9

Speakers (Afternoon)

Daniel Wood
University of Washington

Daniel Wood
University of Washington

Hanspeter Pfister
Mitsubishi Electric Research Lab

Hanspeter Pfister
Mitsubishi Electric Research Lab

Yoichi Sato
University of Tokyo

Yoichi Sato
University of Tokyo

Radek Grzeszczuk

Intel Corporation

Radek Grzeszczuk

Intel Corporation

Course Schedule
(Acquisition)

• 8:30-8:45, Grzeszczuk

– Introduction

• 8:45-9:30, Bouguet

– Basic Techniques of Acquiring Surface Light Fields

• 9:30-10:00, McMillan

– 3D Scanning Using the Image-Based Visual Hull

• Break

• 10:15-11:15, Pollefeys

– Acquisition of Light Field Data with Hand-held Camera

• 8:30-8:45, Grzeszczuk

– Introduction

• 8:45-9:30, Bouguet

– Basic Techniques of Acquiring Surface Light Fields

• 9:30-10:00, McMillan

– 3D Scanning Using the Image-Based Visual Hull

• Break

• 10:15-11:15, Pollefeys

– Acquisition of Light Field Data with Hand-held Camera

10

Course Schedule
(Representation and Visualization)

• 11:15-12:00, Yu

– Recovering Reflectance Models of Real Scenes from

Photographs

• Lunch

• 1:30-2:15, Wood

– Surface Light Fields for 3D Photography

• 2:15-3:00, Pfister

– Point-sample Rendering for Visualization of SLFs

• Break

• 11:15-12:00, Yu

– Recovering Reflectance Models of Real Scenes from

Photographs

• Lunch

• 1:30-2:15, Wood

– Surface Light Fields for 3D Photography

• 2:15-3:00, Pfister

– Point-sample Rendering for Visualization of SLFs

• Break

Course Schedule
(Representation and Visualization)

• 3:15-4:00, Sato

– Eigen-Texture Method for Compression and Synthesis of

Reflectance Data

• 4:00-4:45, Grzeszczuk

– Hardware-Accelerated Rendering of Surface Light Fields

• 4:45-5:00, Questions and Answers

• 3:15-4:00, Sato

– Eigen-Texture Method for Compression and Synthesis of

Reflectance Data

• 4:00-4:45, Grzeszczuk

– Hardware-Accelerated Rendering of Surface Light Fields

• 4:45-5:00, Questions and Answers

Acquisition and Visualization of
Surface Light Fields

SIGGRAPH 2001 Course 46 Notes

Session 1:

Basic Techniques of Registering Surface Light Fields

Jean-Yves Bouguet
Intel Corporation

1

Acquisition of Surface Light Fields

Jean-Yves Bouguet

Microprocessor Research Labs

Intel Corporation

SIGGRAPH 2001 Course on
Acquisition and Visualization of

Surface Light Fields

Image-based Modeling and Rendering

Model

Images

Interactive visualization

2

Examples of physical and synthetic objects

Metallic objects

Furry/fuzzy objects

Transparent objects Synthetic objects

Large environments

Interactive demo

Van Gogh Bust Transparent Glass Star

3

Properties

� Preserves photorealism of scanned objects
– offers video-like image quality but allows interaction

� Extremely high compression of data
– initial data set 2-3GB, compressed data 600KB-10MB

� Ideal as a streaming format
– progressive improvement of quality

� Optimized for graphics hardware

Complete pipeline

� Data acquisition [Bouguet]
– 3D geometry acquisition

– Appearance acquisition (radiance/light field)

� Data processing (compression) [Grzeszczuk]
– Compress the appearance of the object in a representation suitable

for interactive 3D display

� Visualization (rendering) [Grzeszczuk]

4

Outline of this presentation

� Geometry acquisition
– Design and Calibration of a 3D scanner

– 3D Scanning (range data computation)

– Registration of multiple scans

� Capture of appearance (radiance)
– Acquisition of images

– Registration of images

3D Geometry acquisition

Final 3D mesh
from 20 scans
(~10k triangles)

Scanning process
3D scanner

Camera Projector

Object

5

Main Scanning Steps

� Scanner Calibration

� Scanning

� Registration of multiple scans

3D Scanner Calibration

R,T

fc,cc,kc fp,cp,kp

Calibration parameters:

� Extrinsic: R,T (6 coeff.)

� Camera intrinsic: fc,cc,kc (6 coeff.)

� Projector intrinsic: fp,cp,kp (6 coeff.)

P

X

Y

Z

fc,fp: Focal length of camera and projector
cc,cp: Principal points of camera and projector
kc,kp: Distortion coefficients (4th order radial distortion)

pc
pp

{ pc, pc } P
TriangulationPixel coord. 3D

projectorCamera

6

3D Scanner Calibration - Procedure

Main steps:

Step 1: Camera Calibration

• Internal parameters of the camera (fc,cc,kc)

Step 2: Projector calibration

• Internal parameters of the projector (fp,cp,kp)
• 3D position of the projector with respect to the camera (R,T)

Step 3: Global optimization

• Internal parameters of camera and projector (fc,cc,kc,fp,cp,kp)
• 3D position of the projector with respect to the camera (R,T)

3D Scanner Calibration - Procedure

Step 1: Camera Calibration

Calibration images
using a planar grid
(~20-30 images)

...

Camera intrinsics: fc,cc,kc

Positions of the planes

camera

Camera
Calibration

Calibration planes

...Extracted grid corners

7

3D Scanner Calibration - Procedure

Step 2: Projector Calibration

Camera images when a
checkerboard grid is
projected by the projector

...

...
The projected grid
separated from the
checker board pattern
painted on the plane

...Extracted grid corners

Image k

3D Scanner Calibration - Procedure

Step 2: Projector Calibration

Camera

pki
pki

Pki

Πk
Position of the grid plane
with respect to the
camera is known after
camera calibration

pki Pki

8

3D Scanner Calibration - Procedure

Step 2: Projector Calibration

projector

Projector intrinsics: fp,cp,kp

Position of projector wrt the camera {R,T}

Traditional
calibration
procedure

3D Scanner Calibration - Procedure

Step 3: Global optimization (optional)

Global refinement of the internal camera and projector
parameters {fc,cc,kc,fp,cp,kp} and the 3D position of the
projector with respect to the camera {R,T}

9

Main Scanning Steps

� Scanner Calibration

� Scanning

� Registration of multiple scans

Geometry of scanning (Triangulation)

Π

Camera

Camera image

Projector

Projector image

xp

xp

pc

pc

P

P

{pc , xp } PTriangulation:

10

Image processing
Temporal analysis for best accuracy [Curless 95]:

xp is accurately
estimated
modulo the width
of the projected
band (32 pixels)

kpx cp 3234.11)(+=

Coarse to fine projection to lift the ambiguity:

15=k

pixels34.49148034.11)(=+=cp px

{pc , xp(pc)} P

Scan result

Accuracy: ~0.1mm

11

Desk
Lamp

Camera

Stick or
pencil

Desk

Another 3D scanner using a similar temporal
processing: Desktop 3D photography

Time t

[Bouguet and Perona’98]

This shadow-based 3D
scanner uses a similar
temporal processing

Tim
e t

p

ts(p) = 133.27

Temporal processing

Time t

Spatial processing

Column pixel coordinate x

xref = 130.6

x

y

Spatio-temporal
processing for the
shadow scanner

ts(p) = 133.27

[Kanade’91,Curless’95]

12

Geometry of the Shadow Scanner

Desk
Lamp

Camera

Stick or
pencil

Desk

S
Stick

p

P

p

Π

Image

S

Camera
O

Π

Π∩=),(pOP

P

Πd

Example of shadow-scanned object

13

Main Scanning Steps

� Scanner Calibration

� Scanning

� Registration of multiple scans

Capturing the complete object geometry

For complete coverage, need of multiple scans (16- 20)

The corner markers are
used for 3D alignment

14

Computing a unique surface mesh

Unique surface mesh describing
the entire object geometry

Individual (aligned) 2D
meshes

� Generate a surface mesh from a set of unorganized points [Hoppe92]

� Use of a “3D wrapping” software package such as Geomagic Studio
(http://www.geomagic.com)

� “Zipper” the set of partial meshes together into unique mesh [Turk94]

� Volumetric integration using the combined signed distance function [Curless96]

Different approaches:

?

Combined signed distance function

The 2D case:

d>0

d<0

Range data point 1 Range data point 2

d<0

d>0+ + ...

Sum over all the range data points...

d<0

d>0

[Curless96]

15

=
d<0

d>0

Consensus surface
= zero level set

The 2D case:

Combined signed distance function

= Least squares solution surface [Curless96]
(in the sense of minimizing the sum of the squares of the orthogonal distances of the data points to the surface)

Scanning process

Zero-level surface

Combined signed distance

~200k triangles ~10k triangles

Simplified mesh103 x 106 x 234 volume
Resolution: 1mm

Z=4 Z=11 Z=18 Z=25 Z=32 Z=39

Z=46 Z=53 Z=60 Z=67 Z=74 Z=81

Z=88 Z=95 Z=102 Z=109 Z=116 Z=123

Z=130 Z=137 Z=144 Z=151 Z=158 Z=165

Z=172 Z=179 Z=186 Z=193 Z=200 Z=207

d<0

d>0

Z=214 Z=221 Z=228

Computed using
Marching Cubes

Number of scans: 20

16

Need of precise calibration of the scanner

Close up of the face, with 14
independent aligned scans

In order to retain all the details contained in
the individual scans, it is essential that they
align to a very high accuracy (~0.1mm)

The scanner must be very precisely
calibrated (internally and externally)

Outline of this presentation

� Geometry acquisition
– Design and Calibration of a 3D scanner

– 3D Scanning (range data computation)

– Registration of multiple scans

� Capture of appearance (radiance)
– Acquisition of images

– Registration of images

17

Appearance acquisition

(~200-300 pictures)

The appearance of the object is captured through a set of N camera
images (using a hand held camera)

Image 1

Image 2

Image 3

Image 4

Image N

Computing the camera positions (calibration)

Appearance images (339)

Additional calibration images (36)

Calibration parameters:

� Extrinsic: Rn,Tn (6n coeff.)

� Intrinsic: fc,cc,kc (6 coeff.)

Distortion model: 4th order radial distortion

3D Camera positions

18

Alignment of mesh and images

After computation of the camera
positions, the appearance images are
precisely registered with the 3D mesh

Next steps of the pipeline

� Data processing (compression) [Grzeszczuk]
– Compress the appearance of the object in a representation suitable for

interactive 3D display

� Visualization (hardware accelerated rendering) [Grzeszczuk]

19

Light field mapping of physical objects
and synthetic environments

Pros and Cons of acquisition system

Very precise geometry (accuracy ~ 0.1 mm)
Need of two separate acquisition steps (shape and images)
Need to paint the object if too dark or specular (for scanning)
Need very precise calibration for both stages

(for precise registration of images and geometry)
Sometimes, the silhouette of the geometry does not match

perfectly the silhouette boundary on the image, creating
artifacts (especially due to calibration errors)

+-
--
-

20

Silhouette method for shape computation

“Old” image data set “New” image data set

Silhouette method for shape computation

Appearance images (243 images) Segmented silhouette images
(color-based)

21

Silhouette method for shape computation

d=1

d=0

Occupancy volume

183 x 183 x 259 volume
Resolution: 1mm

Visual hull surface

~200k triangles ~10k triangles

Simplified mesh

Z=4 Z=11 Z=18 Z=25 Z=32 Z=39

Z=46 Z=53 Z=60 Z=67 Z=74 Z=81

Z=88 Z=95 Z=102 Z=109 Z=116 Z=123

Z=130 Z=137 Z=144 Z=151 Z=158 Z=165

Z=172 Z=179 Z=186 Z=193 Z=200 Z=207

Z=214 Z=221 Z=228

outside inside Computed using
marching cube

Reprojection of the shape onto the images

The silhouette shape is guaranteed to reproject nicely
onto the camera images (no background artifacts)

22

Pros and Cons of silhouette approach

Simpler acquisition setup (only one data set for shape and
appearance)

No “silhouette artifacts” (alignment between geometry and
images comes for free)

More robust with respect to calibration errors
Less accurate shape (only the visual hull)
The background color must not appear in the object

(or use an alternative foreground/background segmentation
method)

Sometimes, the background color reflects off the object surface
adding weird colors to the object

+

-
-

+

-

+

Interactive demo

Interactive renderings of surface light fields
acquired using the traditional 3D scanning
approach and the silhouette approach

23

Future direction for shape computation

Combine silhouette and stereo information to refine the 3D geometry

Visual Hull
(after silhouette processing)

Refined 3D model
(after stereo refinement)

Image k

Image k+1

References (1)

� B. Curless and M. Levoy, “Better optical triangulation through spacetime
analysis”, ICCV95, pages 987-993, June 1995

� T. Kanade, A. Gruss and L. Carley, “A very fast VLSI rangefinder”, IEEE
International Conference on Robotics and Automation, volume 39, pages
1322-1329, April 1991

� J.-Y. Bouguet and P. Perona, “3D Photography Using Shadows in Dual-
Space Geometry”, Int. Journal of Computer Vision 35(2), 129-149, 1999
available at: http://www.vision.caltech.edu/bouguetj/ICCV98/

Space-time analysis for 3D scanning:

� Hugues Hoppe, Tony DeRose, Tom Duchamp, John McDonald and Werner
Stuetzle, “Surface reconstruction from unorganized points”,
SIGGRAPH’92, pages 71-78

� G. Turk and M. Levoy, “Zippered polygon meshes from range images”,
SIGGRAPH’94, pages 311-318, July 1994

� B. Curless and M. Levoy, “A volumetric method for building complex
models from range images”, SIGGRAPH’96, 1996

Multiple view registration and meshing:

24

References (2)

� J.-Y. Bouguet, “Visual methods for three-dimensional modeling”, Ph.D.
thesis, California Institute of Technology, June 1999
available at: http://www.vision.caltech.edu/bouguetj/thesis/thesis.html

Other reference:

Camera calibration:
� R. Y. Tsai, “A versatile camera calibration technique for high accuracy 3D

machine vision metrology using off-the-shelf TV cameras and lenses”,
IEEE J. Robotics Automat., RA-3(4):323-344, 1987

� D.C. Brown, Calibration of close range cameras, Proc. 12th Congress Int.
Soc. Photogrammetry, Ottawa, Canada

� Y. I. Abdel-Aziz and H. M. Karara, “Direct linear transformation into object
space coordinates in close-range photogrammetry”, Proc. ASP Symposium
on Close-Range Photogrammetry, Urbana, Illinois, pages 1-18, 1971

� J.-Y. Bouguet, Camera calibration tutorial and Matlab code
available at: http://www.vision.caltech.edu/bouguetj/calib_doc/
Included in the course material

Better Optical Triangulation through Spacetime Analysis

Brian Curless Marc Levoy

curless@cs.stanford.edu levoy@cs.stanford.edu
Computer Systems Laboratory Computer Science Department

Stanford University Stanford University
Stanford, CA 94305 Stanford, CA 94305

Abstract

The standard methods for extracting range data from optical trian-
gulation scanners are accurate only for planar objects of uniform
reflectance illuminated by an incoherent source. Using these meth-
ods, curved surfaces, discontinuous surfaces, and surfaces of vary-
ing reflectance cause systematic distortions of the range data. Co-
herent light sources such as lasers introduce speckle artifacts that
further degrade the data. We present a new ranging method based
on analyzing the time evolution of the structured light reflections.
Using our spacetime analysis, we can correct for each of these arti-
facts, thereby attaining significantly higher accuracy using existing
technology. We present results that demonstrate the validity of our
method using a commercial laser stripe triangulation scanner.

1 Introduction

Active optical triangulation is one of the most common methods for
acquiring range data. Although this technology has been in use for
over twenty years, its speed and accuracy has increaseddramatically
in recent years with the development of geometrically stable imag-
ing sensors such as CCD’s and lateral effect photodiodes. The range
acquisition literature contains many descriptions of optical triangu-
lation range scanners, of which we list a handful [2] [8] [10] [12]
[14] [17] . The variety of methods differ primarily in the structure of
the illuminant (typically point, stripe, multi-point, or multi-stripe),
the dimensionality of the sensor (linear array or CCD grid), and the
scanning method (move the object or move the scanner hardware).

Figure 1 shows a typical system configuration in two dimen-
sions. The location of the center of the reflected light pulse imaged
on the sensor corresponds to a line of sight that intersects the illumi-
nant in exactly one point, yielding a depth value. The shape of the
object is acquired by translating or rotating the object through the
beam or by scanning the beam across the object.

The accuracyof optical triangulation methods hinges on the abil-
ity to locate the “center” of the imaged pulse at each time step. For
optical triangulation systems that extract range from single imaged
pulses at a time, variations in surface reflectance and shape result
in systematic range errors. Several researchers have observed one
or both of these accuracy limitations [4] [12] [16]. For the case
of coherent illumination, the images of reflections from rough sur-
faces are also subject to laser speckle noise, introducing noise into
the range data. Researchers have studied the effect of speckle on
range determination and have indicated that it is a fundamental limit
to the accuracy of laser range triangulation, though its effects can
be reduced with well-known speckle reduction techniques [1] [5].
Mundy and Porter [12] attempt to correct for variations in surface
reflectance by noting that two imaged pulses, differing in position or
wavelength are sufficient to overcome the reflectance errors, though

α

θ

Surface

Sensor

Imaging lens

Illuminant

Range
 point

Figure 1: Optical triangulation geometry. The angle � is the trian-
gulation angle while � is the tilt of the sensor plane needed to keep
the laser plane in focus.

some restrictive assumptions are necessary for the case of differ-
ing wavelengths. Kanade, et al, [11] describe a rangefinder that
finds peaks in time for a stationary sensor with pixels that view fixed
points on an object. This method of peak detection is very similar
to the one presented in this paper for solving some of the problems
of optical triangulation; however, the authors in [11] do not indicate
that their design solves or even addresses these problems. Further,
we show that the principle generalizes to other scanning geometries.

In the following sections, we first show how range errors arise
with traditional triangulation techniques. In section 3, we show that
by analyzing the time evolution of structured light reflections, a pro-
cess we call spacetime analysis, we can overcome the accuracy lim-
itations caused by shape and reflectance variations. Experimental
evidence also indicates that laser speckle behaves in a manner that
allows us to reduce its distorting effect as well.

In sections 4 and 5, we describe our hardware and software im-
plementation of the spacetime analysis using a commercial scanner
and a video digitizer, and we demonstrate a significant improvement
in range accuracy. Finally, in section 6, we conclude and describe
future directions.

2 Error in triangulation systems

For optical triangulation systems, the accuracy of the range data de-
pends on proper interpretation of imaged light reflections. The most
common approach is to reduce the problem to one of finding the
“center” of a one dimensional pulse, where the “center” refers to
the position on the sensor which hopefully maps to the center of the
illuminant. Typically, researchers have opted for a statistic such as
mean, median or peak of the imaged light as representative of the
center. These statistics give the correct answer when the surface is

Surface

Sensor

Illuminant

Range
point Range

point

Surface

Sensor

Illuminant

Surface

Sensor

Illuminant

ρ
1

Range
point

ρ
2

Range
point

Surface

Illuminant

Sensor

(a) (d)(c)(b)

Figure 2: Range errors using traditional triangulation methods. (a) Reflectance discontinuity. (b) Corner. (c) Shape discontinuity with respect
to the illumination. (d) Sensor occlusion.

perfectly planar, but they are generally inaccurate whenever the sur-
face perturbs the shape of the illuminant.

2.1 Geometric intuition

Perturbations of the shape of the imaged illuminant occur whenever:

� The surface reflectance varies.

� The surface geometry deviates from planarity.

� The light paths to the sensor are partially occluded.

� The surface is sufficiently rough to cause laser speckle.

In Figure 2, we give examples of how the first three circumstances
result in range errors even for an ideal triangulation system with infi-
nite sensor resolution and perfect calibration. For purposes of illus-
tration, we omit the imaging optics of Figure 1 and treat the sensor
as a one dimensional orthographic sensor. Further, we assume an
illuminant of Gaussian cross-section, and we use the mean for de-
termining the center of an imaged pulse. Figure 2a shows how a step
reflectance discontinuity results in range points that do not lie on the
surface. Figure 2b and 2c provide two examples of shape variations
resulting in range errors. Note that in Figure 2c, the center of the
illuminant is not even striking a surface. In this case, a measure of
the center of the pulse results in a range value, when in fact the cor-
rect answer is to return no range value whatever. Finally, Figure 2d
shows the effect of occluding the line of sight between the illumi-
nated surface and the sensor. This range error is very similar to the
error encountered in Figure 2c.

The fourth source of range error is laser speckle, which arises
when coherent laser illumination bounces off of a surface that is
rough compared to a wavelength [7]. The surface roughness intro-
duces random variations in optical path lengths, causing a random
interference pattern throughout space and at the sensor. The result is
an imaged pulse with a noise component that affects the mean pulse
detection, causing range errors even from a planar target.

2.2 Quantifying the error

To quantify the errors inherent in using mean pulse analysis, we
have computed the errors introduced by reflectance and shape vari-
ations for an ideal triangulation system with a single Gaussian il-
luminant. We take the beam width, w, to be the distance between
the beam center and the e�2 point of the irradiance profile, a con-
vention common to the optics literature. We present the range er-
rors in a scale invariant form by dividing all distances by the beam
width. Figure 3 illustrates the maximum deviation from planarity

introduced by scanning reflectance discontinuities of varying step
magnitudes for varying triangulation angles. As the size of the step
increases, the error increases correspondingly. In addition, smaller
triangulation angles, which are desirable for reducing the likelihood
of missing data due to sensor occlusions, actually result in larger
range errors. This result is not surprising, as sensor mean posi-
tions are converted to depths through a division by sin�, where �
is the triangulation angle, so that errors in mean detection translate
to larger range errors for smaller triangulation angles.

Figure 4 shows the effects of a corner on range error, where the
error is taken to be the shortest distance between the computed range
data and the exact corner point. The corner is oriented so that the
illumination direction bisects the corner’s angle as shown in Fig-
ure 2b. As we might expect, a sharper corner results in greater com-
pression of the left side of the imaged Gaussian relative to the right
side, pushing the mean further to the right on the sensor and push-
ing the triangulated point further behind the corner. In this case, the
triangulation angle has little effect as the division by sin� is offset
almost exactly by the smaller observed left/right pulse compression
imbalance.

One possible strategy for reducing these errors would be to de-
crease the width of the beam and increase the resolution of the sen-
sor. However, diffraction limits prevent us from focusing the beam
to an arbitrary width. The limits on focusing a Gaussian beam with
spherical lenses are well known [15]. In recent years, Bickel, et al,
[3] have explored the use of axicons (e.g., glass cones and other sur-
faces of revolution) to attain tighter focus of a Gaussian beam. The
refracted beam, however, has a zeroth order Bessel function cross-
section; i.e., it has numerous side-lobes of non-negligible irradiance.
The influence of these side-lobes is not well-documented and would
seem to complicate triangulation.

3 A New Method: Spacetime Analysis

The previous section clearly demonstrates that analyzing each im-
aged pulse using a low order statistic leads to systematic range er-
rors. We have found that these errors can be reduced or eliminated
by analyzing the time evolution of the pulses.

3.1 Geometric intuition

Figure 5 illustrates the principle of spacetime analysis for a laser tri-
angulation scanner with Gaussian illuminant and orthographic sen-
sor as it translates across the edge of an object. As the scanner steps
to the right, the sensor images a smaller and smaller portion of the
laser cross-section. By time t3 , the sensorno longer images the cen-
ter of the illuminant, and conventional methods of range estimation

 theta = 10 deg
 theta = 20 deg
 theta = 30 deg
 theta = 40 deg

|
1

|
2

|
3

|
4

|
5

|
6

|
7

|
8

|
9

|
10

|0.0

|0.5

|1.0

|1.5

|2.0

|2.5

|3.0

 Relectance Ratio

 M
ax

 E
rr

or
 /

L
as

er
 W

id
th

Figure 3: Plot of errors due to reflectancediscontinuities for varying
triangulation angles (theta).

|
60

|
80

|
100

|
120

|
140

|
160

|
180

|0.00

|0.25

|0.50

|0.75

|1.00

|1.25

|1.50

 Corner Angle (Degrees)

 C
lo

se
st

 D
is

ta
nc

e
/ L

as
er

 W
id

th

Figure 4: Plot of errors due to corners.

fail. However, if we look along the lines of sight from the corner to
the laser and from the corner to the sensor, we see that the profile
of the laser is being imaged over time onto the sensor (indicated by
the dotted Gaussian envelope). Thus, we can find the coordinates
of the corner point (xc; zc) by searching for the mean of a Gaussian
along a constant line of sight through the sensor images. We can
express the coordinates of this mean as a time and a position on the
sensor, where the time is in general between sensor frames and the
position is between sensor pixels. The position on the sensor indi-
cates a depth, and the time indicates the lateral position of the cen-
ter of the illuminant. In the example of Figure 5, we find that the
spacetime Gaussian corresponding to the exact corner has its mean
at position sc on the sensor at a time tc between t2 and t3 during
the scan. We extract the corner’s depth by triangulating the center
of the illuminant with the line of sight corresponding to the sensor
coordinate sc, while the corner’s horizontal position is proportional
to the time tc.

3.2 A complete derivation

For a more rigorous analysis, we consider the time evolution of the
irradiance from a translating differential surface element, �O, as
recorded at the sensor. We refer the reader to Figure 6 for a de-
scription of coordinate systems; note that in contrast to the previous
section, the surface element is translating instead of the illuminant-
sensor assembly. The element has a normal n̂ and an initial position

t1

Illuminant

Sensor

Surface

t2 t3 t4

t1

t2

t3

t4 (tc, sc)

(xc, zc)

tc

tc

v

θ

Figure 5: Spacetime mapping of a Gaussian illuminant. As the light
sweeps across the corner point, the sensor images the shape of the
illuminant over time.

θ

x

z

s

v
p

ωS

nω
L

δO

 δΟ ≡ differential surface element
p(t) ≡ position of surface element
 po ≡ (xo, zo) ≡ position of surface
 element at t=0
 n ≡ normal of surface element
 v ≡ velocity of whole object
 ωL ≡ direction of illuminant
 ωS ≡ view direction

Illuminant

Sensor

Surface

Figure 6: Triangulation scanner coordinate system. A depiction of
the coordinate systems and the vectors relevant to a moving differ-
ential element.

~po and is translating with velocity ~v, so that:

~p(t) = ~po + t~v (1)

Our objective is to compute the coordinates ~po = (xo; zo) given
the temporal irradiance variations on the sensor. For simplicity, we
assume that~v = (�v;0). The illuminant we consider is a laser with
a unidirectional Gaussian radiance profile. We can describe the total
radiance reflected from the element to the sensor as:

L(~p(t); !̂S) = fr(!̂L; !̂S)jn̂ � !̂LjILe
�2(xo�vt)

2

w2 (2)

where fr is the bidirectional reflection distribution function (BRDF)
of the point ~po, jn̂�!̂Lj is the cosine of the angle between the surface
and illumination. The remaining terms describe a point moving in
the x-direction under the Gaussian illuminant of widthw and power
IL.

Projecting the point ~p(t) onto the sensor, we find:

s = (xo � vt)cos�� zosin� (3)

where s is the position on the sensor and � is the angle between the
sensor and laser directions. We combine Equations 2-3 to give us
an equation for the irradiance observed at the sensor as a function
of time and position on the sensor:

ES(t; s) = fr(!̂L; !̂S)jn̂ � !̂LjILe
�2(xo�vt)

2

w2

�(s� (xo � vt)cos�� zosin�) (4)

To simplify this expression, we condense the light reflection terms
into one measure:

� � fr(!̂L; !̂S)jn̂ � !̂Lj (5)

which we will refer to as the reflectance coefficient of point ~p for the
given illumination and viewing directions. We also note that x =
vt is a measure of the relative x-displacement of the point during
a scan, and z = s=sin� is the relation between sensor coordinates
and depth values along the center of the illuminant. Making these
substitutions we have:

ES(x; z) = �ILe
�2(x�xo)

2

w2

�((x� xo)cos�+ (z � zo)sin�) (6)

This equation describes a Gaussian running along a tilted line
through the spacetime sensor plane or “spacetime image”. We de-
fine the “spacetime image” to be the image whose columns are filled
with sensor scanlines that evolve over time. Through the substitu-
tions above, position within a column of this image represents dis-
placement in depth, and position within a row represents time or dis-
placement in lateral position. Figure 7 shows the theoretical space-
time image of a single point based on the derivation above, while
Figures 8a and 8b shows the spacetime image generated during a
real scan. From Figure 7, we see that the tilt angle is �� with re-
spect to the z-axis, and the width of the Gaussian along the line is:

w0 = w=cos� (7)

The peak value of the Gaussian is �IL, and its mean along the line
is located at (xo; zo), the exact location of the range point. Note
that the angle of the line and the width of the Gaussian are solely
determined by the fixed parameters of the scanner, not the position,
orientation, or BRDF of the surface element.

Thus, extraction of range points should proceed by computing
low order statistics along tilted lines through the sensor spacetime
image, rather than along columns (scanlines) as in the conventional
method. As a result, we can determine the position of the surface
element independently of the orientation and BRDF of the element
and independently of any other nearby surface elements. In the-
ory, the decoupling of range determination from local shape and
reflectance is complete. In practice, optical systems and sensors
have filtering and sampling properties that limit the ability to resolve
neighboring points. In Figure 8d, for instance, the extracted edges
extend slightly beyond their actual bounds. We attribute this artifact
to filtering which blurs the exact cutoffs of the edges into neighbor-
ing pixels in the spacetime image, causing us to find additional range
values.

As a side effect of the spacetime analysis, the peak of the Gaus-
sian yields the irradiance at the sensor due to the point. Thus, we
automatically obtain an intensity image precisely registered to the
range image.

3.3 Generalizing the geometry

We can easily generalize the previous results to other scanner ge-
ometries under the following conditions:

� The illuminant direction is constantover the path of each range
point.

� The sensor is orthographic.

� The motion is purely translational.

θ

x

z

w' =
w

cosθ

E
S

zo

xo

ρ ΙL

Figure 7: Spacetime image of a point passing through a Gaussian
illuminant.

These conditions ensure that the reflectance coefficient, � =
fr(!̂L; !̂S)jn̂ � !̂Lj, is constant. Note that the illumination need
only be directional; coherent or incoherent light of any pattern is ac-
ceptable. Further, the translational motion need not be of constant
speed, only constant direction; we can correct for known variations
in speed by applying a suitable warp to the spacetime image.

We can weaken each of these restrictions if � does not vary ap-
preciably for each point as it passes through the illuminant. A per-
spective sensor is suitable if the changes in viewing directions are
relatively small for neighboring points inside the illuminant. This
assumption of “local orthography” has yielded excellent results in
practice. In addition, we can tolerate a rotational component to the
motion as long as the radius of curvature of the point path is large
relative to the beam width, again minimizing the effects on �.

3.4 Correcting laser speckle

The discussion in sections 3.1-3.3 show how we can go about ex-
tracting accurate range data in the presence of shape and reflectance
variations, as well as occlusions. But what about laser speckle? Em-
pirical observation of the time evolution of the speckle pattern with
our optical triangulation scanner strongly suggests that the image of
laser speckle moves as the surface moves. The streaks in the space-
time image of Figure 8b correspond to speckle noise, for the object
has uniform reflectance and should result in a spacetime image with
uniform peak amplitudes. These streaks are tilted precisely along
the direction of the spacetime analysis, indicating that the speckle
noise adheres to the surface of the object and behaves as a noisy re-
flectance variation. Other researchers have observed a “stationary
speckle” phenomenon as well [1]. Proper analysis of this problem
is an open question, likely to be resolved with the study of the gov-
erning equations of scalar diffraction theory for imaging of a rough
translating surface under coherent Gaussian beam illumination [6].

4 Implementation

We have implemented the spacetime analysis presented in the pre-
vious section using a commercial laser triangulation scanner and a
real-time digital video recorder.

4.1 Hardware

The optical triangulation system we use is a Cyberware MS platform
scanner. This scanner collects range data by casting a laser stripe
on the object and by observing reflections with a CCD camera posi-
tioned at an angle of 30o with respect to the plane of the laser. The
platform can either translate or rotate an object through the field of

(a)
(b) (c) (d)

TA SA

Illuminant

Sensor

Figure 8: From geometry to spacetime image to range data. (a) The original geometry. (b) The resulting spacetime image. TA indicates the
direction of traditional analysis, while SA is the direction of the spacetime analysis. The dotted line corresponds to the scanline generated at
the instant shown in (a). (c) Range data after traditional mean analysis. (d) Range data after spacetime analysis.

view of the triangulation optics. The laser width varies from 0.8 mm
to 1.0 mm over the field of view which is approximately 30 cm in
depth and 30 cm in height. Each CCD pixel images a portion of the
laser plane roughly 0.5 mm by 0.5 mm. Although the Cyberware
scanner performs a form of peak detection in real time, we require
the actual video frames of the camera for our analysis. We capture
these frames with an AbekasA20 video digitizer and an Abekas A60
digital video disk, a system that can acquire 486 by 720 size frames
at 30 Hz. These captured frames have approximately the same res-
olution as the Cyberware range camera, though they represent a re-
sampling of the reconstructed CCD output.

4.2 Algorithms

Using the principles of section 3, we can devise a procedure for ex-
tracting range data from spacetime images:

1. Perform the range scan and capture the spacetime images.

2. Rotate the spacetime images by ��.

3. Find the statistics of the Gaussians in the rotated coordinates.

4. Rotate the means back to the original coordinates.

In order to implement step 1 of this algorithm, we require a sequence
of CCD images. Most commercial optical triangulation systems dis-
card each CCD image after using it (e.g. to compute a stripe of
the range map). As described in section 4.1, we have assembled
the necessary hardware to record the CCD frames. In section 3,
we discussed a one dimensional sensor scenario and indicated that
perspective imaging could be treated as locally orthographic. For
a two dimensional sensor, we can imagine the horizontal scanlines
as separate one dimensional sensors with varying vertical (y) off-
sets. Each scanline generates a spacetime image, and by stacking
the spacetime images one atop another, we define a spacetime vol-
ume. In general, we must perform our analysis along the paths of
points, paths which may cross scanlines within the spacetime vol-
ume. However, we have observed for our system that the illuminant
is sufficiently narrow and the perspective of the range camera suf-
ficiently weak, that these paths essentially remain within scanlines.
This observation allows us to perform our analysis on each space-
time image separately.

In step 2, we rotate the spacetime images so that Gaussians are
vertically aligned. In a practical system with different sampling
rates in x and z, the correct rotation angle can be computed as:

tan� =
�z
�x

tan�T (8)

where � is the new rotation angle, �x and �z are the sample spacing
in x and z respectively, and �T is the triangulation angle. In order to
determine the rotation angle, �, for a given scanning rate and region
of the field of view of our Cyberware scanner, we first determined
the local triangulation angle and the sample spacings in depth (z)
and lateral position (x). Equation 8 then yields the desired angle.

In step 3, we compute the statistics of the Gaussians along each
rotated spacetime image raster. Our method of choice for comput-
ing these statistics is a least squares fit of a parabola to the log of the
data. We have experimented with fitting the data directly to Gaus-
sians using the Levenberg-Marquardt non-linear least squares algo-
rithm [13], but the results have been substantially the same as the
log-parabola fits. The Gaussian statistics consist of a mean, which
corresponds to a range point, as well as a width and a peak am-
plitude, both of which indicate the reliability of the data. Widths
that are far from the expected width and peak amplitudes near the
noise floor of the sensor imply unreliable data which may be down-
weighted or discarded during later processing (e.g., when combin-
ing multiple range meshes [18]). For the purposes of this paper, we
discard unreliable data.

Finally, in step 4, we rotate the range points back into the global
coordinate system.

Traditionally, researchers have extracted range data at sampling
rates corresponding to one range point per sensor scanline per unit
time. Interpolation of shape between range points has consisted of
fitting primitives (e.g., linear interpolants like triangles) to the range
points. Instead, we can regard the spacetime volume as the primary
source of information we have about an object. After performing a
real scan, we have a sampled representation of the spacetime vol-
ume, which we can then reconstruct to generate a continuous func-
tion. This function then acts as our range oracle, which we can query
for range data at a sampling rate of our choosing. In practice, we
can magnify the sampled spacetime volume prior to applying the
range imaging steps described above. The result is a range grid with
a higher sampling density based directly on the imaged light reflec-
tions.

5 Results

5.1 Reflectance correction

To evaluate the tolerance of the spacetime method to changes in
reflectance, we performed two experiments, one quantitative and
the other qualitative. For the first experiment, we generated pla-
nar cards with step reflectance changes varying from about 1:1 to
10:1 and scanned them at an angle of 30o (roughly facing the sen-
sor). Figure 9 shows a plot of maximum deviations from planarity

 Scanline mean
� Spacetime Gaussian

|
1

|
3

|
5

|
7

|
9

|
11

|
13

|0.0

|0.2

|0.4

|0.6

|0.8

 Reflectance Ratio

 E
rr

or
 (

m
m

)

������
�
� �

� �

Figure 9: Measured error due to varying reflectance steps.

(a)

(b)

(c)

Figure 10: Reflectance card. (a) Photograph of a planar card with
the word “Reflectance” printed on it, and shaded renderings of the
range data generated by (b) mean pulse analysis and (c) spacetime
analysis.

when using traditional per scanline mean analysis and our spacetime
analysis. The spacetime method has clearly improved over the old
method, yielding up to 85% reductions in range errors.

For qualitative comparison, we produced a planar sheet with the
word “Reflectance” printed on it. Figure 10 shows the results. The
old method yields a surface with the characters well-embossed into
the geometry, whereas the spacetime method yields a much more
planar surface indicating successfuldecoupling of geometry and re-
flectance.

5.2 Shape correction

We conducted several experiments to evaluate the effects of shape
variation on range acquisition. In the first experiment, we generated
corners of varying angles by abutting sharp edges of machined alu-
minum wedges which are painted white. Figure 11 shows the range
errors that result for traditional and spacetime methods. Again, we
see an increase in accuracy, though not as great as in the reflectance
case.

We also scanned two 4 mm strips of paper at an angle of 30o

(roughly facing the sensor) to examine the effects of depth continu-
ity. Figure 12b shows the “edge curl” observed with the old method,
while the spacetime method in Figure 12c shows a significant reduc-
tion of this artifact under spacetime analysis. We have found that the
spacetime method reduces the length of the edge curl from an aver-
age of 1.1 mm to an average of approximately 0.35 mm.

Finally, we impressed the word “shape” onto a plastic ribbon us-

 Scanline mean
� Spacetime Gaussian

|
100

|
120

|
140

|
160

|0.0

|0.1

|0.2

|0.3

|0.4

|0.5

 Corner Angle (degrees)

 D
is

ta
nc

e
to

 c
or

ne
r

(m
m

)

�

�

�

�

Figure 11: Measured error due to corners of varying angles.

(a) (b) (c)

Figure 12: Depth discontinuities and edge curl. (a) Photograph of
two strips of paper, and shaded renderings of the range data gen-
erated by (b) mean pulse analysis and (c) spacetime analysis. The
“edge curl” indicated by the hash-marks in (b) is 1.1mm.

ing a commonly available label maker. In Figure 10, we wanted the
word “Reflectance” to disappear because it represented changes in
reflectance rather than in geometry. In Figure 13, we want the word
“Shape” to stay because it represents real geometry. Furthermore,
we wish to resolve it as highly as possible. Figure 13 shows the re-
sult. Using the scanline mean method, the word is barely visible.
Using the new spacetime analysis, the word becomes legible.

5.3 Speckle reduction

We performed range scans on the planar surfaces and generated
range points using the traditional and spacetime methods. After fit-

(a)

(b)

(c)

Figure 13: Shape ribbon. (a) Photograph of a surface with raised
lettering (letters are approx. 0.3 mm high), and renderings of the
range data generated by (b) mean pulse analysis and (c) spacetime
analysis.

ting planes to range points, we found a 30-60% reduction in average
deviation from planarity when using the spacetime analysis.

5.4 A complex object

Figure 14 shows the results of scanning a model tractor. Figure 14b
is a rendering of the data generated by the Cyberware scanner hard-
ware and is particularly noisy. This added noisiness results from
the method of pulse analysis performed by the hardware, a method
similar to peak detection. Peak detection is especially susceptible
to speckle noise, because it extracts a range point based on a sin-
gle value or small neighborhood of values on a noisy curve. Mean
analysis tends to averageout the speckle noise, resulting in smoother
range data as shown in Figure 14c. Figure 14d shows our spacetime
results and Figure 14e shows the spacetime results with 3X interpo-
lation and resampling of the spacetime volume as described in sec-
tion 4.2. Note the sharper definition of features on the body of the
tractor and less jagged edges in regions of depth discontinuity.

5.5 Remaining sources of error

The results we presented in this section clearly show that the space-
time analysis yields more accurate range data, but the results are im-
perfect due to system limitations. These limitations include:

� CCD noise

� Finite sensor resolution

� Optical blurring and electronic filtering

� Quantization errors

� Calibration errors

� Surface-surface inter-reflections

In addition, we observed some electronic artifacts in our Cyberware
scanner that influenced our results. We expect, however, that any
measures taken to reduce the effects of the limiting factors described
above will lead to higher accuracy. By contrast, if one uses tradi-
tional methods of range extraction, then increasing sensor resolu-
tion and reducing the effects of filtering alone will not significantly
increase tolerance to reflectance and shape changes when applying
the traditional methods of range extraction.

6 Conclusion

We have described several of the systematic limitations in tradi-
tional methods of range acquisition with optical triangulation range
scanners, including intolerance to reflectanceand shape changesand
speckle noise. By analyzing the time evolution of the reflected light
imaged onto the sensor, we have shown that distortions induced by
shape and reflectance changes can be corrected, while the influence
of laser speckle can be reduced. In practice, we have demonstrated
that we can significantly reduce range distortions with existing hard-
ware. Although the spacetime method does not completely elimi-
nate range artifacts in practice, it has proven to reduce the artifacts
in all experiments we have conducted.

In future work, we plan to incorporate the improved range data
with algorithms that integrate partial triangulation scans into com-
plete, unified meshes. We expect this improved data to ease the
process of estimating topology, especially in areas of high curva-
ture which are prone to edge curl artifacts. We will also investigate
methods for increasing the resolution of the existing hardware by

registering and deblurring multiple spacetime images [9]. Finally,
we hope to apply the results of scalar diffraction theory to put the
achievement of speckle reduction on sound theoretical footing.

Acknowledgments

We thank the people of Cyberware for the use of the range scanner
and for their help in accessing the raw video output from the range
camera.

References

[1] R. Baribeau and M. Rioux. Influence of speckle on laser range
finders. Applied Optics, 30(20):2873–2878, July 1991.

[2] Paul Besl. Advances in Machine Vision, chapter 1 - Active
optical range imaging sensors, pages 1–63. Springer-Verlag,
1989.

[3] G. Bickel, G. Haulser, and M. Maul. Triangulation with ex-
panded range of depth. Optical Engineering, 24(6):975–977,
December 1985.

[4] M. Buzinski, A. Levine, and W.H. Stevenson. Performance
characteristics of range sensors utilizing optical triangulation.
In Proceedings of the IEEE 1992 National Aerospace and
Electronics Conference, NAECON 1992, pages 1230–1236,
May 1992.

[5] R.G. Dorsch, G. Hausler, and J.M. Herrmann. Laser triangu-
lation: fundamental uncertainty in distance measurement. Ap-
plied Optics, 33(7):1306–1314, March 1994.

[6] Joseph W. Goodman. Introduction to Fourier optics.
McGraw-Hill, 1968.

[7] J.W. Goodman. Laser Speckle and Related Phenomena, chap-
ter 1 - Statistical properties of laser speckle patterns, pages 9–
76. Springer-Verlag, 1984.

[8] G. Hausler and W. Heckel. Light sectioning with large depth
and high resolution. Applied Optics, 27(24):5165–5169, Dec
1988.

[9] M. Irani and S. Peleg. Improving resolution by image reg-
istration. CVGIP: Graphical Models and Image Processing,
53(3):231–239, May 1991.

[10] R.A. Jarvis. A perspective on range-finding techniques for
computer vision. IEEE Trans. Pattern Analysis Mach. Intell.,
5:122–139, March 1983.

[11] T Kanade, A Gruss, and L Carley. A very fast vlsi rangefinder.
In 1991 IEEE International Conference on Robotics and Au-
tomation, volume 39, pages 1322–1329, April 1991.

[12] J.L. Mundy and G.B. Porter. Three-dimensional machine vi-
sion, chapter 1 - A three-dimensional sensor based on struc-
tured light, pages 3–61. Kluver Academic Publishers, 1987.

[13] William H. Press, Brian P. Flannery, Saul A. Teukolsky, and
William T. Vetterling. Numerical Recipes in C. Cambridge
University Press, 1986.

[14] M. Rioux, G. Bechthold, D. Taylor, and M. Duggan. Design
of a large depth of view three-dimensional camera for robot
vision. Optical Engineering, 26(12):1245–1250, Dec 1987.

(a)

(b) (c)

(d) (e)

Figure 14: Model tractor. (a) Photograph of original model and shaded renderings of range data generated by (b) the Cyberware scanner
hardware, (c) mean pulse analysis, (d) our spacetime analysis, and (e) the spacetime analysis with 3X interpolation of the spacetime volume
before fitting the Gaussians. Below each of the renderings is a blow-up of one section of the tractor body (indicated by rectangle on rendering)
with a plot of one row of pixel intensities.

[15] A.E. Siegman. Lasers. University Science Books, 1986.

[16] M. Soucy, D. Laurendeau, D. Poussart, and F. Auclair. Be-
haviour of the center of gravity of a reflected gaussian laser
spot near a surface reflectance discontinuity. Industrial
Metrology, 1(3):261–274, Sept 1990.

[17] T. Strand. Optical three dimensional sensing. Optical Engi-
neering, 24(1):33–40, Jan-Feb 1983.

[18] G. Turk and M. Levoy. Zippered polygon meshes from range
images. In SIGGRAPH 94 Conference Proceedings, pages
311–318, July 1994.

1999 IEEE. Reprinted, with permission, from International Journal of Computer Vision

Vol. 35, Number 2, Nov./Dec. 1999 - pp. 129-149

3D photography using shadows in dual-space geometry

Jean-Yves Bouguety and Pietro Peronayz

y California Institute of Technology, 136-93, Pasadena, CA 91125, USA

z Universit�a di Padova, Italy

fbouguetj,peronag@vision.caltech.edu

Abstract
A simple and inexpensive approach for extracting the three-

dimensional shape of objects is presented. It is based on `weak
structured lighting'. It requires very little hardware besides the
camera: a light source (a desk-lamp or the sun), a stick and
a checkerboard. The object, illuminated by the light source, is
placed on a stage composed of a ground plane and a back plane;
the camera faces the object. The user moves the stick in front
of the light source, casting a moving shadow on the scene. The
3D shape of the object is extracted from the spatial and tempo-
ral location of the observed shadow. Experimental results are
presented on �ve di�erent scenes (indoor with a desk lamp and
outdoor with the sun) demonstrating that the error in recon-
structing the surface is less than 0:5% of the size of the object.
A mathematical formalism is proposed that simpli�es the nota-
tion and keep the algebra compact. A real-time implementation
of the system is also presented.

1 Introduction and motivation
One of the most valuable functions of our visual

system is informing us about the shape of the ob-
jects that surround us. Manipulation, recognition, and
navigation are amongst the tasks that we can better
accomplish by seeing shape. Ever-faster computers,
progress in computer graphics, and the widespread ex-
pansion of the Internet have recently generated inter-
est in imaging both the geometry and surface texture
of objects. The applications are numerous. Perhaps
the most important ones are animation and entertain-
ment, industrial design, archiving, virtual visits to mu-
seums, and commercial on-line catalogues.

In designing a system for recovering shape, di�er-
ent engineering tradeo�s are proposed by each appli-
cation. The main parameters to be considered are
cost, accuracy, ease of use and speed of acquisition.
So far the commercial 3D scanners (e.g. the Cy-
berware scanner) have emphasized accuracy over the
other parameters. Active illumination systems are
popular in industrial applications where a �xed in-
stallation with controlled lighting is possible. These
systems use motorized transport of the object and ac-
tive (laser, LCD projector) lighting of the scene which
makes them very accurate, but unfortunately expen-
sive [2, 23, 26, 38, 43]. Furthermore most active sys-
tems fail under bright outdoor scenes except those
based upon synchronized scanning. One such system
has been presented by Riou in [33].

Figure 1: The general setup of the proposed method: The
camera is facing the scene illuminated by the light source (top-
left). The �gure illustrates an indoor scenario when a desk lamp
(without reector) is used as light source. In outdoor the lamp
is substituted by the sun. The objects to scan are positioned
on the ground oor (horizontal plane), in front of a background
plane. When an operator freely moves a stick in front of the
light, a shadow is cast on the scene. The camera acquires a
sequence of images I(x; y; t) as the operator moves the stick so
that the shadow scans the entire scene. A sample image is shown
on the top right �gure. This constitutes the input data to the
3D reconstruction system. The three dimensional shape of the
scene is reconstructed using the spatial and temporal properties
of the shadow boundary throughout the input sequence.

An interesting challenge for vision scientists is to
take the opposite point of view: emphasize low cost
and simplicity and design 3D scanners that demand
little more hardware than a PC and a video camera
by making better use of the data that is available in
the images.

A number of passive cues have long been known
to contain information on 3D shape: stereoscopic
disparity, texture, motion parallax, (de)focus, shad-
ows, shading and specularities, occluding contours and
other surface discontinuities. At the current state of
vision research stereoscopic disparity is the single pas-
sive cue that reliably gives reasonable accuracy. Un-
fortunately it has two major drawbacks: it requires
two cameras thus increasing complexity and cost, and
it cannot be used on untextured surfaces, which are
common for industrially manufactured objects.

We propose a method for capturing 3D surfaces
that is based on what we call `weak structured light-
ing.' It yields good accuracy and requires minimal
equipment besides a computer and a camera: a stick,

1

λ (t)v

Πh

Πv

(t)hΛ

(t)v

(t)
iΛ

O

Π

Y

Λ

Xc

Z c

holding a stick
The user Edge of the shadow

generated by the stick

λ (t)h

λi

Πv

Πh

xc

Xc

ω(t)

c

ωh

ωv

c

λh(t)

(t)

λ (t)h

λi λi

λv(t)λ (t)v

P

p

Π

Camera

P

Horizontal plane

Vertical plane
Light source

S

p

Image plane

Figure 2: Geometrical principle of the method

a checkerboard, and a point light source. The light
source may be a desk lamp for indoor scenes, and the
sun for outdoor scenes. A human operator, acting as
a low precision motor, is also required.

We start with the description of the scanning
method in Sec. 2, followed in Sec. 3 by a number
of experiments that assess the convenience and accu-
racy of the system in indoor as well as outdoor sce-
narios. We end with a discussion and conclusions in
Sec. 4. In addition, we show that expressing the prob-
lem in dual-space geometry [12] enables to explore and
compute geometrical properties of three dimensional
scenes with simple and compact notation. This for-
malism is discussed in the appendix together with a
complete error analysis of the method.

2 Description of the method

The general principle consists of casting a moving
shadow with a stick onto the scene, and estimating the
three dimensional shape of the scene from the sequence
of images of the deformed shadow. Figure 1 shows a
typical setup. The objective is to extract scene depth
at every pixel in the image. The point light source and
the leading edge of the stick de�ne, at every time in-
stant, a plane; therefore, the boundary of the shadow
that is cast by the stick on the scene is the intersec-
tion of this plane with the surface of the object. We
exploit this geometrical insight for reconstructing the
3D shape of the object. Figure 2 illustrates the ge-
ometrical principle of the method. Approximate the
light source with a point S, and denote by �h the
horizontal plane (ground) and �v a vertical plane or-
thogonal to �h. Assume that the position of the plane

�h in the camera reference frame is known from cal-
ibration (sec. 2.1). We infer the location of �v from
the projection �i (visible in the image) of the inter-
section line �i between �h and �v (sec. 2.2). The
goal is to estimate the 3D location of the point P in
space corresponding to every pixel p (of coordinates
xc) in the image. Call t the time when the shadow
boundary passes by a given pixel xc (later referred to
as the shadow time). Denote by �(t) the correspond-
ing shadow plane at that time t. Assume that two
portions of the shadow projected on the two planes
�h and �v are visible on the image: �h(t) and �v(t).
After extracting these two lines, we deduce the lo-
cation in space of the two corresponding lines �h(t)
and �v(t) by intersecting the planes (Oc; �h(t)) and
(Oc; �v(t)) with �h and �v respectively. The shadow
plane �(t) is then the plane de�ned by the two non-
collinear lines �h(t) and �v(t) (sec. 2.5). Finally, the
point P corresponding to xc is retrieved by intersect-
ing �(t) with the optical ray (Oc; p). This �nal stage
is called triangulation (sec. 2.6). Notice that the key
steps are: (a) estimate the shadow time ts(xc) at ev-
ery pixel xc (temporal processing), (b) locate the two
reference lines �h(t) and �v(t) at every time instant
t (spatial processing), (c) calculate the shadow plane,
and (d) triangulate and calculate depth. These tasks
are described in sections 2.4, 2.5 and 2.6.

Goshtasby et al. [22] also designed a range scanner
using a shadow generated by a �ne wire in order to
reconstruct the shape of dental casts. In their system,
the wire was motorized and its position calibrated.

Notice that if the light source is at a known location
in space, then the shadow plane �(t) may be directly
inferred from the point S and the line �h(t). Conse-
quently, in such cases, the additional plane �v(t) is
not required. We describe here two versions of the
setup: one containing two calibrated planes and an
uncalibrated (possibly moving) light source; the sec-
ond containing one calibrated plane and a calibrated
light source.

2.1 Camera calibration

The goal of calibration is to recover the location of
the ground plane �h and the intrinsic camera parame-
ters (focal length, principal point and radial distortion
factor). The procedure consists of �rst placing a pla-
nar checkerboard pattern on the ground in the location
of the objects to scan (see �gure 3-left). From the im-
age captured by the camera (�gure 3-right), we infer
the intrinsic and extrinsic parameters of the camera,
by matching the projections onto the image plane of
the known grid corners with the expected projection
directly measured on the image (extracted corners of
the grid); the method is proposed by Tsai in [39]. We
use a �rst order symmetric radial distortion model for
the lens, as proposed in [11, 39, 25]. When using a
single image of a planar calibration rig, the principal

2

point (i.e. the intersection of the optical axis with the
image plane) cannot be recovered [25, 37]. In that
case it is assumed to be identical to the image cen-
ter. In order to �t a full camera model (principal
point included), we propose to extend that approach
by integrating multiple images of the planar grid po-
sitioned at di�erent locations in space (with di�erent
orientations). This method has been suggested, stud-
ied and demonstrated by Sturm and Maybank in [37].
Theoretically, a minimum of two images is required to
recover two focals (along x and y), the principal point
coordinates, and the lens distortion factor. We recom-
mend to use that method with three or four images for
best accuracies on the intrinsic parameters [37]. In our
experience, in order to achieve good 3D reconstruction
accuracies, it is suÆcient to use the simple approach
with a single calibration image without estimating the
camera principal point. In other words, the quality of
reconstruction is quite insensitive to errors on the prin-
cipal point position. A whole body of work supporting
that observation may be found in the literature. We
especially advise the reader most interested in issues
on sensitivity of 3D Euclidean reconstruction results
with respect to intrinsic calibration errors, to refer to
recent publications on self-calibration, such as Boug-
noux [5] or Pollefeys et al. [28, 31, 32].

For more general insights on calibration techniques,
we refer the reader to the work of Faugeras [19] and
others [10, 11, 14, 18, 36, 42]. A 3D rig should be
used for achieving maximum accuracy.

Figure 3: Camera calibration

2.2 Vertical plane localization �
v

Call !h and !v respectively the coordinate vectors
of �h and �v (refer to �gure 2 and Appendix A for
notation). After calibration, !h is known. The two
planes �h and �v intersect along the line �i observed
on the image plane at �i. Therefore, according to
proposition 1 in Appendix A, !h�!v is parallel to �i,
coordinate vector of �i, or equivalently, there exists a
scalar � such that !v = !h+��i. Since the two planes
�h and �v are by construction orthogonal, we have
h!h; !vi = 0. That leads to the closed-form expression
for calculating !v :

!v = !h �
h!h; !hi

�i; !h

��i:

b

t
s

 b

Ts

cO

Z

Y

X

c

c

c

Image plane

S

Camera

h

t s

∆ TLight source

S must lie on the
∆ sline = (T,T) Π

h

Ground plane

B

orthogonal to the plane
A pencil of known height h

Figure 4: Light source calibration

Notice that in every realistic scenario, the two planes
�h and �v do not contain the camera center Oc. Their
coordinate vectors !h and !v in dual-space are there-
fore always well de�ned (see Appendix A and sections
2.6 and 2.7 for further discussions).

2.3 Light source calibration
When using a single reference plane for scanning

(for example �h without �v), it is required to know
the location of the light source in order to infer the
shadow plane location �(t) (see section 2.5 for de-
tails). Figure 4 illustrates a simple technique for cal-
ibrating the light source that requires minimal extra
equipment: a pencil of known length. The operator
stands a pencil on the reference plane �h (see �g.
4-top-left). The camera observes the shadow of the
pencil projected on the ground plane. The acquired
image is shown on �gure 4-top-right. From the two
points b and ts on this image, one can infer the po-
sitions in space of B and Ts, respectively the base of
the pencil, and the tip of the pencil shadow (see bot-
tom �gure). This is done by intersecting the optical

rays (Oc; b) and (Oc; ts) with �h (known from cam-
era calibration). In addition, given that the height of

3

the pencil h is known, the coordinates of its tip T can
be directly inferred from B. The point light source
S has to lie on the line � = (T; Ts) in space. This
yields one linear constraint on the light source posi-
tion. By taking a second view, with the pencil at a
di�erent location on the plane, one retrieves a second
independent constraint with another line �0. A closed
form solution for the 3D coordinate of S is then de-
rived by intersecting the two lines � and �0 (in the
least squares sense). Notice that since the problem is
linear, one can integrate the information from more
than 2 views and make the estimation more accurate.
If N > 2 images are used, one can obtain a closed form
solution for the closest point ~S to the N inferred lines
(in the least squares sense). We also estimate the un-

certainty on that estimate from the distance of ~S to
each one of the � lines. That indicates how consis-
tently the lines intersect a single point in space. Refer
to [7, 8, 6] for the complete derivations.

2.4 Spatial and temporal shadow edge lo-
calization

A fundamental stage of the method is the detec-
tion of the lines of intersection of the shadow plane
�(t) with the two planes �h and �v; a simple ap-

proach to extract �h(t) and �v(t) may be used if we
make sure that a number of pixel rows at the top and
bottom of the image are free from objects. Then the
two tasks to accomplish are: (a) Localize the edges
of the shadow that are directly projected on the two
orthogonal planes �h(t) and �v(t) at every discrete
time t (every frame), leading to the set of all shadow
planes �(t) (see sec. 2.5), (b) Estimate the time ts(xc)
(shadow time) where the edge of the shadow passes
through any given pixel xc = (xc; yc) in the image
(see �gure 5). Curless and Levoy [16] demonstrated
that such a spatio-temporal approach is appropriate
for preserving sharp discontinuities in the scene as well
as reducing range distortions. A similar temporal pro-
cessing for range sensing was used by Gruss, Tada and
Kanade in [23, 27].

Both processing tasks correspond to �nding the
edge of the shadow, but the search domains are dif-
ferent: one operates on the spatial coordinates (image
coordinates) and the other one on the temporal coor-
dinate. Although independent in appearance, the two
search procedures need to be compatible: if at time t0
the shadow edge passes through pixel xc = (xc; yc),
the two searches should �nd the exact same point
(xc; yc; t0) (in space/time). One could observe that
this property does not hold for all techniques. One
example is the image gradient approach for edge de-
tection (e.g. Canny edge detector [13]). Indeed, the
maximum spatial gradient point does not necessar-
ily match with the maximum temporal gradient point
(which is function of the scanning speed). In addition,
the spatial gradient is a function both of changes in

t = t
0
 = 0288

x
c

λ
v
(t

0
)

λ
h
(t

0
)

λ
i

Π
v

Π
h

x

y

50 100 150 200 250 300

50

100

150

200

50 100 150 200 250
-80

-60

-40

-20

0

20

40

60

80

x
edge

(209,t
0
)=114.51

∆ I(x,209,t
0
)

Column pixel x
0 100 200 300 400 500 600 700

-100

-50

0

50

100

∆ I(x
c
,y

c
,t)

t
s
(x

c
,y

c
)=287.95

Time t (frame number)

Figure 5: Spatial and temporal shadow localization

illumination due to the shadow and changes in albedo
and changes in surface orientation. Furthermore, it
is preferable to avoid any spatial �ltering on the im-
ages (e.g. smoothing) which would produce blending
in the �nal depth estimates, especially noticeable at
occlusions and surface discontinuities (corners for ex-
ample). These observations were also addressed by
Curless and Levoy in [16].

It is therefore necessary to use a unique criterion
that would equally describe shadow edges in space
(image coordinates) and time and is insensitive to
changes in surface albedo and surface orientation.
The simple technique we propose here that satis�es
that property is spatio-temporal thresholding. This
is based on the following observation: as the shadow
is scanned across the scene, each pixel (x; y) sees its
brightness intensity going from an initial maximum
value Imax(x; y) (when there is no shadow yet) down to
a minimum value Imin(x; y) (when the pixel is within
the shadow) and then back up to its initial value as the
shadow goes away. This pro�le is characteristic even
when there is a fair amount of internal reections in
the scene [29, 41].

For any given pixel xc = (x; y), de�ne Imin(x; y) and
Imax(x; y) as its minimum and maximum brightness
throughout the entire sequence:(

Imin(x; y)
:
= min

t
fI(x; y; t)g

Imax(x; y)
:
= max

t
fI(x; y; t)g

(1)

We de�ne the shadow edge to be the locations (in

4

space-time) where the image I(x; y; t) intersects with
the threshold image Ishadow(x; y) de�ned as the mean
value between Imax(x; y) and Imin(x; y):

Ishadow(x; y)
:
=

1

2
(Imax(x; y) + Imin(x; y)) (2)

This may be also regarded as the zero crossings of the
di�erence image �I(x; y; t) de�ned as follows:

�I(x; y; t)
:
= I(x; y; t)� Ishadow(x; y) (3)

The two bottom plots of �g. 5 illustrate shadow
edge detection in the spatial domain (to calculate
�h(t) and �v(t)) and in the temporal domain (to calcu-
late ts(xc)). The bottom-left plot shows the pro�le of
�I(x; y; t) along row y = 209 at time t = t0 = 288
versus the column pixel coordinate x. The second
zero crossing of that pro�le corresponds to one point
xedge(t0) = (114:51; 209) belonging to �h(t0), the right
edge of the shadow (computed at subpixel accuracy by
linear interpolation). Identical processing is applied
on 39 other rows for �h(t0) and 70 rows for �v(t0) in
order to retrieve the two edges (by least square line �t-
ting across the two sets of points on the image). Simi-
larly, the bottom-right �gure shows the temporal pro-
�le �I(xc; yc; t) at the pixel xc = (xc; yc) = (133; 120)
versus time t (or frame number). The shadow time
at that pixel is de�ned as the �rst zero crossing loca-
tion of that pro�le: ts(133; 120) = 287:95 (computed
at sub-frame accuracy by linear interpolation). Notice
that the right edge of the shadow corresponds to the
front edge of the temporal pro�le, because the shadow
was scanned from left to right in all experiments. Intu-
itively, pixels corresponding to occluded regions in the
scene do not provide any relevant depth information.
Therefore, we only process pixels with contrast value
Icontrast(x; y)

:
= Imax(x; y) � Imin(x; y) larger than a

pre-de�ned threshold Ithresh. This threshold was 30
in all experiments reported in this paper (recall that
the intensity values are encoded from 0 for black to
255 for white). This threshold should be proportional
to the level of noise in the image.

Due to the limited dynamic range of the camera, it
is clear that one should avoid saturating the sensor,
and that one would expect poor accuracy in areas of
the scene that reect little light towards the camera
due to their orientation with respect to the light source
and/or low albedo. Our experiments were designed to
test the extent of this problem.

2.5 Shadow plane estimation �(t)

Denote by !(t), �h(t) and �v(t) the coordinate vec-
tors of the shadow plane �(t) and of the shadow edges
�h(t) and �v(t) at time t. Since �h(t) is the pro-
jection of the line of intersection �h(t) between �(t)
and �h, then !(t) lies on the line passing through !h
with direction �h(t) in dual-space (from Appendix A).

Λh(t)Dual image of

(t)Λv
Λh(t)

ωv

ωh
zω

yω

xω
O

λv(t)
λh(t)

ω(t)

Image of the shadow
edge projected on the

horizontal plane

coordinate vector
Shadow plane

at time t

Image of the shadow
edge projected on the

vertical plane

Dual image of Λv(t)

(Ω)

Horizontal plane

Vertical plane

Figure 6: Shadow plane estimation using two planes: The
coordinate vector of the shadow plane !(t) is the intersection

point of the two dual lines �̂h(t) and �̂v(t) in dual-space (
).
In presence of noise, the two lines do not intersect. The vector
!(t) is then the best intersection point between the two lines
(in the least squares sense).

That line, denoted �̂h(t), is the dual image of �h(t) in
dual-space (see Appendix A). Similarly, !(t) lies on

the line �̂v(t) passing through !v with direction �v(t)
(dual image of �v(t)). Therefore, in dual-space, the
coordinate vector of the shadow plane !(t) is at the

intersection between the two known lines �̂h(t) and

�̂v(t). In the presence of noise these two lines will not
exactly intersect (equivalently, the 3 lines �i, �h(t)
and �v(t) do not necessarily intersect at one point on

the image plane, or their coordinate vectors �i, �h(t)

and �v(t) are not coplanar). However, one may still
identify !(t) with the point that is the closest to the
lines in the least-squares sense. The solution to that
problem reduces to:

!(t) =
1

2
(!1(t) + !2(t)) ; (4)

with

!1(t)
:
= !h + �h�h(t)

!2(t)
:
= !v + �v�v(t)

(5)

if [�h �v]
T = A�1b, where A and b are de�ned as

follows (for clarity, the variable t is omitted):

A
:
=

�

�h; �h

�
�

�h; �v

�
�

�h; �v

�

�v; �v

� � ; b
:
=

�

�h; !v � !h

�

�v; !h � !v

� �

Note that the two vectors !1(t) and !2(t) are the
orthogonal projections, in dual-space, of !(t) onto

�̂h(t) and �̂v(t) respectively. The norm of the dif-
ference between these two vectors may be used as an
estimate of the error in recovering �(t). If the two
edges �h(t) and �v(t) are estimated with di�erent re-
liabilities, a weighted least squares method may still
be used.

Figure 6 illustrates the principle of shadow plane es-
timation in dual-space when using the two edges �h(t)

5

Image of the shadow
edge projected on the

horizontal plane

Horizontal planeωh

λh(t)

zω

yω

xω
O

Λh(t)
S

ω(t)

Λh(t)Dual image of

(Ω)

Dual image of S

Figure 7: Shadow plane estimation using one plane and

the light source position: In dual-space, the coordinate vec-
tor of the shadow plane !(t) is the intersection point of the line

�̂h(t) and the plane Ŝ, dual image of the point light source S.
This method requires the knowledge of the light source position.
A light source calibration method is presented in section 2.3.

and �v(t). This reconstruction method was used in
experiments 1, 4 and 5.

Notice that the additional vertical plane �v en-
ables us to extract the shadow plane location without
requiring the knowledge of the light source position.
Consequently, the light source is allowed to move dur-
ing the scan (this may be the case of the sun, for
example).

When the light source is of �xed and known location
in space, the plane �v is not required. Then, one may
directly infer the shadow plane position from the line
�h(t) and from the light source position S:

!(t) = !h + �h�h(t) (6)

where

S 2 �(t) ,

!(t); XS

�
= 1 , �h =

1�

!h; XS

�

�h(t); XS

�
where XS = [XS YS YS]

T is the coordinate vector
of the light source S in the camera reference frame.
In dual-space geometry, this corresponds to intersect-

ing the line �̂h(t) with the plane Ŝ, dual image of
the source point S. This process is illustrated in
�gure 7. Notice that

�h(t); XS

�
= 0 corresponds to

the case where the shadow plane contains the camera
center of projection Oc. This is singular con�gura-
tion that makes the triangulation fail (k!(t)k ! 1).
This approach requires an additional step of estimat-
ing the position of S. Section 2.3 describes a simple
method for light source calibration. This reconstruc-
tion method was used in experiments 2 and 3.

It is shown in Appendix B that 1 �

!h; XS

�
=

hS=dh where hS and dh are the orthogonal distances
of the light source S and the camera center Oc to the

plane �h (see �gure 8). Then, the constant �h may
be written as:

�h =
hS=dh

�h(t); XS

� = 1=dh

�h(t); XS=hS

� (7)

This expression highlights the fact that the algebra
naturally generalizes to cases where the light source is
located at in�nity (and calibrated). Indeed, in those

cases, the ratio XS=hS reduces to dS= sin� where dS
is the normalized light source direction vector (in the
camera reference frame) and � the elevation angle of
the light source with respect to the plane �h (de�ned
on �gure 8). In dual-space, the construction of the
shadow plane vector !(t) remains the same: it is still

at the intersection of �̂h(t) with Ŝ. The only di�erence

is that the dual image Ŝ is a plane crossing the origin
in dual-space. The surface normal of that plane is
simply the vector dS .

2.6 Triangulation
Once the shadow time ts(xc) is estimated at a given

pixel xc = [xc yc 1]T (in homogeneous coordinates),
one can identify the corresponding shadow plane
�(ts(xc)) (with coordinate vector !c

:
= !(ts(xc))).

Then, the point P in space associated to xc is retrieved
by intersecting �(ts(xc)) with the optical ray (Oc; xc)
(see �gure 2):

Zc =
1

h!c; xci
=) Xc = Zc xc =

xc

h!c; xci
; (8)

if Xc = [Xc Yc Zc]
T is de�ned as the coordinate

vector of P in the camera reference frame.
Notice that the shadow time ts(xc) acts as an index

to the shadow plane list �(t). Since ts(xc) is estimated
at sub-frame accuracy, the plane �(ts(xc)) (actually
its coordinate vector !c) results from linear interpo-
lation between the two planes �(t0 � 1) and �(t0) if
t0 � 1 < ts(xc) < t0 and t0 integer:

!c = �t !(t0 � 1) + (1��t)!(t0);

where �t = t0 � ts(xc), 0 � �t < 1 (see �gure 17).
Once the range data are recovered, a mesh is gen-

erated by connecting neighboring points in triangles.
The connectivity is directly given by the image: two
vertices are neighbors if their corresponding pixels are
neighbors in the image. In addition, since every vertex
corresponds to a unique pixel, texture mapping is also
a straightforward task. Figures 9, 11, 12, 13 and 14
show experimental results.

Similarly to stereoscopic vision, when the baseline
becomes shorter, as the shadow plane moves closer
to the camera center triangulation becomes more and
more sensitive to noise. In the limit, if the plane
crosses the origin (or equivalently k!ck ! 1) triangu-
lation becomes impossible. This is why it is not a big

6

loss that we cannot represent planes going through
the origin with our parameterization. This observa-
tion will appear again in the next section on error
analysis.

2.7 Design Issues - Error analysis
When designing the scanning system, it is impor-

tant to choose a spatial con�guration of the camera
and the light source that maximizes the overall qual-
ity of reconstruction of the scene.

The analysis conducted in Appendix C leads to an
expression for the variance �2Zc

of the error of the
depth estimate Zc of a point P belonging to the scene
(equation 18):

�2Zc

= Z4
c

�
!x cos'+ !y sin'

fc krI(xc)k

�2

�2I (9)

where xc is the coordinate vector of the projection p
of P on the image plane, !c = [!x !y !z]

T is the

shadow plane vector at time t = ts(xc), rI(xc) =

[Ix(xc) Iy(xc)]
T = krI(xc)k [cos' sin']T is the

spatial gradient vector of the image brightness at the
shadow edge at xc at time t = ts(xc) (in units of
brightness per pixel), �I is the standard deviation of
the image brightness noise (in units of brightness), and
fc is the camera focal length (in pixels).

Three observations may be drawn from equation 9.
First, since �2Zc

is inversely proportional to krI(xc)k
2,

the reconstruction accuracy increases with the sharp-
ness of the shadow boundary. This behavior has been
observed in past experiments, and discussed in [8].
This might explain why scans obtained using the sun
(experiments 4 and 5) are more noisy that those with a
desk lamp (as the penumbra is larger with the sun by a
factor of approximately 5). Second, notice that �2Zc

is

proportional to k!ck
2 (through the terms !2

x and !
2
y),

or, equivalently, inversely proportional to the square of
the distance of the shadow plane to the camera center
Oc. Therefore, as the shadow plane moves closer to the
camera, triangulation becomes more and more sensi-
tive to noise (see discussion in section 2.6). The third
observation is less intuitive: one may notice that �Zc

does not explicitly depend on the local shadow speed
at xc, at time t = ts(xc). Therefore, decreasing the
scanning speed would not increase accuracy. However,
for the analysis leading to equation 9 to remain valid
(see Appendix C), the temporal pixel pro�le must be
suÆciently sampled within the transition area of the
shadow edge (the penumbra). Therefore, if the shadow
edge were sharper, the scanning should also be slower
so that the temporal pro�le at every pixel would be
properly sampled. Decreasing further the scanning
speed would bene�t the accuracy only if the temporal
pro�le were appropriately low-pass �ltered or other-
wise interpolated before extraction of ts(xc). This is
an issue for future research.

hS

Xc

Oc

Πh

dh

cZ
Yc

S

φ
θ

C

Lξ

Camera
Light source

Figure 8: Geometric setup: The camera is positioned at a
distance dh away from the plane �h and tilted down towards it
at an angle �. The light source is located at a height hS, with
its direction de�ned by the azimuth and elevation angles � and
� in the reference frame attached to the plane �h. Notice that
the sign of cos � directly relates to which side of the camera the
lamp is standing: positive on the right, and negative on the left.

An experimental validation of the variance expres-
sion (9) is reported in section 3 (�gure 10).

In the case where the light source position is known,
it is possible to write the \average" depth variance as
a direct function of the variables de�ning the geometry
of the system (Appendix C, equation 22):

�Zc
javerage � dh

tan�

sin2 � jcos �j

�I

fc jIx(xc)j
(10)

where the quantities dh, �, � and � characterize
the spatial con�guration of the camera and the light
source with respect to the reference plane �h (�gure
8). Notice that this quantity may even be computed
prior to scanning right after calibration.

In order to maximize the overall reconstruction
quality, the position of the light source needs then to
be chosen so that the norm of the ratio tan�= cos �
is minimized. Therefore, the two optimal values for
the azimuth angle are � = 0 and � = � corresponding
to positioning the lamp either to the right (� = 0) or
to the left (� = �) of the camera (see �gure 8). Re-
garding the elevation angle �, it would be bene�cial
to make tan� as small as possible. However, making
� arbitrarily small is not practically possible. Indeed,
setting � = 0 would constrain the light source to lie on
the plane �h which would then drastically reduce the
e�ective coverage of the scene due to large amount of
self-shadows cast on the scenery. A reasonable trade-
o� for � is roughly between 60 and 70 degrees. Regard-
ing the camera position, it would also be bene�cial to
make sin � as large as possible (ideally equal to one).
However, it is very often not practical to make � ar-
bitrarily close to �=2. Indeed, having � = �=2 brings
the reference plane �h parallel to the image plane.
Then, standard visual camera calibration algorithms

7

are known to fail (due to lack of depth perspective in
the image). In most experiments, we set � to roughly
�=4.

Once again, for validation purposes, we may use
equation 10 to estimate the reconstruction error of the
scans performed in experiment 3 (�gure 12). From a
set of 10 images, we �rst estimate the average image
brightness noise (�I = 2), and the shadow edge sharp-

ness (krIk � 50). After camera and light source
calibration, the following set of parameters is recov-
ered: fc = 428 pixels, dh = 22 cm, � = 39:60 degrees,
hS = 53:53 cm, � = �4:91 degrees and � = 78:39
degrees. Equation 10 returns then an estimate of the
reconstruction error (�Zc

� 0:2 mm) very close to the
actual error experimentally measured on the �nal re-
constructed surface (between 0:1 mm and 0:2 mm).
The �rst expression given in equation 9 may also be
used for obtaining a more accurate estimate of �Zc

speci�c to every point in the scene.

2.8 Merging scans
The range data can only be retrieved at pixels cor-

responding to regions in the scene illuminated by the
light source and seen by the camera. In order to ob-
tain better coverage of the scene, one may take multi-
ple scans of the same scene having the light source at
di�erent locations each time, while keeping the cam-
era position �xed. Consider the case of two scans with
the lamp �rst on the right, and then on the left of the
camera (see �gure 9). Assume that at a given pixel xc
on the image, two shadow planes are available from
the two scans: �L

c and �R
c . Denote by !Lc and !Rc

their respective coordinate vectors. Then, two esti-
mates ZL

c and ZR
c of the corresponding depth at xc

are available (from equation 8):�
ZL
c = 1=

!Lc ; xc

�
ZR
c = 1=

!Rc ; xc

� (11)

One may then calculate the depth estimate at xc
by taking a weighted average of ZL

c and ZR
c :

Zc
:
= �L Z

L
c + �R Z

R
c (12)

where the weights �L and �R are computed based on
the respective reliabilities of the two depth estimates.
Assuming that ZL

c and ZR
c are random variables with

independent noise terms, they are optimally averaged
(in the minimum variance sense) using the inverse of
the variances as weights [30]:

�L

�R
=

�2R
�2L

=)

�
�L = �2R=(�

2
R + �2L)

�R = �2L=(�
2
R + �2L)

(13)

where �2L and �2R are the variances of the error at-

tached to ZL
c and ZR

c respectively.
A sensitivity analysis of the method described in

Appendix C provides expressions for those variances
(given in equation 9). This technique was used in ex-
periment 1 for merging two scans (see �gure 9).

2.9 Real-time implementation
We implemented a real-time version of our 3D scan-

ning algorithm in collaboration with Silvio Savarese of
the university of Naples, Italy. In that implementation
the process is divided into two main steps. In the �rst
step, the minimum and maximum images Imin(x; y)
and Imax(x; y) (eq. 1) are computed through a �rst
fast shadow sweep over the scene (with no shadow
edge detection). That step allows to pre-compute the
threshold image Ishadow(x; y) (eq. 2) which is useful to
compute in real-time the di�erence image �I(x; y; t)
(eq. 3) during the next stage: the scanning proce-
dure itself. During scanning, temporal and spatial
shadow edge detections are performed as described
in section 2.4: As a new image I(x; y; t0) is acquired
at time t = t0, the corresponding di�erence image
�I(x; y; t0) is �rst computed. Then, a given pixel
(xc; yc) is selected as a pixel lying on the edge of
the shadow if �I(xc; yc; t) crosses zero between times
t = t0 � 1 and t = t0. In order to make that deci-
sion, and then compute its corresponding sub-frame
shadow time ts(xc; yc), only the previous image dif-
ference �I(x; y; t0 � 1) needs to be stored in memory.
Once a pixel (xc; yc) is activated and its sub-frame
shadow time ts(xc; yc) computed, one may directly
identify its corresponding shadow plane � by linear
interpolation between the current shadow plane �(t0)
and the previous one �(t0 � 1) (see sec. 2.5). There-
fore, the 3D coordinates of the point may be directly
computed by triangulation (see sec. 2.6). As a re-
sult, in that implementation, neither the shadow times
ts(x; y), nor the entire list of shadow planes �(t) need
to be stored in memory, only the previous di�erence
image �I(x; y; t0 � 1) and the previous shadow plane
�(t0 � 1). In addition, scene depth map (or range
data) is computed in real-time. The �nal implemen-
tation that we designed also takes advantage of pos-
sible multiple passes of the shadow edge over a given
pixel in the image by integrating all the successive
depth measurements together based on their relative
reliabilities (equations 11, 12 and 13 in section 2.8).
Details of the implementation may be found in [34].

The real-time program was developed under Visual
C++ and works at 30 frames a second on images of
size 320 � 240 on a Pentium 300MHz machine: it
takes approximately 30 seconds to scan a scene with
a single shadow pass (i.e. 30� 30 = 900 frames), and
between one and two minutes for a re�ned scan using
multiple shadow passes. The system uses the PCI
frame grabber PXC200 from Imagenation, a NTSC
black and white SONY XC-73/L camera (1/3 inch
CCD) with a 6mm COSMICAR lens (leading to a 45o

horizontal �eld of view). Source code (matlab for cal-
ibration and C for scanning) and complete hardware
references and speci�cations are available online at
http://www.vision.caltech.edu/bouguetj/ICCV98.
At the same location, a short demonstration movie of

8

the working system is also available.

3 Experimental Results
3.1 Calibration accuracy
Camera calibration. For a given setup, we ac-
quired 5 images of the checkerboard pattern (see �gure
3-right), and performed independent calibrations on
them. The checkerboard, placed at di�erent posi-
tions in each image, consisted of 187 visible corners
on a 16 � 10 grid. We computed both mean values
and standard deviations of all the parameters inde-
pendently: the focal length fc, radial distortion fac-
tor kc and ground plane position �h. Regarding the
ground plane position, it is convenient to look at its
distance dh to the camera originOc and its normal vec-
tor nh expressed in the camera reference frame (recall:
!h = nh=dh). The following table summarizes the cal-
ibration results:

Parameters Estimates Relative
errors

fc (pixels) 426:8 � 0:8 0:2%

kc �0:233 � 0:002 1%

dh (cm) 112:1 � 0:1 0:1%

nh

0
@

�0:0529 � 0:0003
0:7322 � 0:0003
0:6790 � 0:0003

1
A 0:05%

!h (m�1)

0
@

�0:0472 � 0:0003
0:653 � 0:006
0:606 � 0:006

1
A 0:1%

Lamp calibration. Similarly, we collected 10 images
of the pencil shadow (like �gure 4-top-right) and per-
formed calibration of the light source on them. See
section 2.3. Notice that the points b and ts were
manually extracted from the images. De�ne XS as
the coordinate vector of the light source in the cam-
era reference frame. The following table summarizes
the calibration results obtained for the setup shown in
�gure 4 (refer to �gure 8 for notation):

Parameters Estimates Relative
errors

XS (cm)

0
@

�13:7� 0:1
�17:2� 0:3
�2:9� 0:1

1
A � 2%

hS (cm) 34:04 � 0:15 0:5%

� (degrees) 146:0 � 0:8 0:2%

� (degrees) 64:6� 0:2 0:06%

The estimated lamp height agrees with the manual
measure (with a ruler) of 34� 0:5 cm.

This accuracy is suÆcient for not inducing any
signi�cant global distortion onto the �nal recovered
shape, as we discuss in the next section.

3.2 Scene reconstructions
Experiment 1 - Indoor scene: We took two scans
of the same scene with the desk lamp �rst on the right
side and then on the left side of the camera. The two
resulting meshes are shown on the top row on �gure

Figure 9: Experiment 1 - Indoor scene

9. The meshes were then merged together following
the technique described in section 2.8. The bottom
�gure shows the resulting mesh composed of 66; 579
triangles. We estimated the surface error (�Zc

) to ap-
proximately :7 mm in standard deviation over 50 cm
large objects, leading to a relative reconstruction error
of 0:15%. The white holes in the mesh images corre-
spond to either occluded regions (not observed from
the camera, or not illuminated) or very low albedo ar-
eas (such as the black squares on the horizontal plane).
There was no signi�cant global deformation in the �-
nal structured surface: after �tting a quadratic model
through sets of points on the two planes, we only no-
ticed a decrease of approximately 5% in standard devi-
ation of the surface error. One may therefore conclude
that the calibration procedure returns suÆciently ac-
curate estimates. The original input sequences were
respectively 665 and 501 frames long, each image be-
ing 320� 240 pixels large, captured with a grayscale
camera.

Figure 10 reports a comparison test between the
theoretical depth variances obtained from expression
(9) and that computed from the reconstructed surface.
This test was done on the �rst scan of the scene shown
on �gure 9-top-left. In that test, we experimentally
compute the standard deviation �Zc

of the error on
the depth estimate Zc at 13 points p = (A;B; : : : ;M)

9

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

GF

ED

C
B

A

L

K

J

I
H

M

σ THEORY (mm)

σ Z
c E

X
PE

R
IM

E
N

T
 (

m
m

)

G
F

E D
C

B A

L K J I H

M

p rI [!x !y]
T

Zc �Zc th. �Zc exp.

A

71:5
18:0

1:6591
0:2669

1332.4 0.19 0.37

B

69:0
12:0

1:7755
0:3762

1317.2 0.21 0.28

C

61:0
11:0

1:9639
0:3576

1355.6 0.28 0.44

D

52:0
12:0

2:0788
0:3071

1300.0 0.31 0.48

E

40:5
14:0

2:2454
0:2170

1286.2 0.40 0.52

F

42:0
12:0

2:3455
0:1606

1318.6 0.43 0.65

G

37:5
10:0

2:5048
0:1101

1363.4 0.55 0.70

H

46:5
9:0

1:7752
0:3776

1800.8 0.58 0.65

I

38:5
9:5

1:8700
0:3608

1789.6 0.72 0.70

J

38:0
9:5

2:0038
0:3491

1786.1 0.78 0.91

K

28:0
7:5

2:1815
0:2523

1749.7 1.08 1.08

L

21:5
7:0

2:2834
0:1953

1769.0 1.46 1.34

M

51:0
10:0

1:7905
0:3765

1495.2 0.37 0.43

Figure 10: Comparison of measured and predicted re-

construction error �Zc : The standard deviation �Zc of the
depth estimate error are experimentally calculated at 13 points
p = (A;B; : : : ;M) picked randomly on the horizontal plane �h

and computed theoretically using equation 9. The experimental
estimates are reported in the last column of the table (in mm)
and the second last column reports the corresponding theoreti-
cal estimates. The terms involved in equation 9 are also given:
rI (in units of brightness per pixel), [!x !y]T (in m�1) and
Zc (in mm). The image noise was experimentally estimated to
�I = 2 brightness values, and the focal value used was fc = 426
pixels. The top-left �gure shows a plot is the theoretical stan-
dard deviations versus the experimental ones. Observe that the
theoretical error model captures quite faithfully the actual vari-
ations in accuracy of reconstruction within the entire scene: as
the point of interest moves from the left to the right part of the
scenery, accuracy increases due to sharper edges, and a smaller
shadow plane vector !c; in addition, deeper areas in the scene
are more noisy mainly because of larger absolute depths Zc and
shallower shadow edges (smaller krIk). We conclude from that
experiment that equation 9 returns an accurate estimate for
�Zc .

picked randomly on the horizontal plane �h of the
scan data shown on �gure 9-top-left. Figure 10-top-
right shows the positions of those points in the scene.
The standard deviation �Zc

at a given point p in the
image is experimentally calculated by �rst taking the
9� 9 pixel neighborhood around p resulting into a set
of 81 points in space that should lie on �h. We then
�t a plane across those 81 points (in the least squares
sense) and set �Zc

as the standard deviation of the
residual algebraic distances of the entire set of points
to this best �t plane. The experimental estimates for
�Zc

are reported in the last column of the table (in
mm). The second last column reports the correspond-
ing theoretical estimates of �Zc

(in mm) computed
using equation 9. The terms involved in that equation
are also given: rI (in units of brightness per pixel),
[!x !y]

T (in m�1) and Zc (in mm). The image noise
was experimentally estimated to �I = 2 brightness val-
ues (calculation based on 100 acquired images of the
same scene), and the focal value used was fc = 426
pixels. See sec. 2.7 for a complete description of those
quantities. The top-left �gure shows a plot of the the-
oretical standard deviations versus the experimental
ones. Observe that the theoretical error model cap-
tures quite faithfully the actual variations in accuracy
of reconstruction within the entire scene: as the point
of interest moves from the left to the right part of the
scenery, accuracy increases due to sharper edges, and
a smaller shadow plane vector !c; in addition, deeper
areas in the scene are more noisy mainly because of
larger absolute depths Zc and shallower shadow edges
(smaller krIk). We conclude from that experiment
that equation 9 returns a valid estimate for �Zc

.

Experiment 2 - Scanning of a textured skull:
We took one scan of a small painted skull, using a
single reference plane �h, with known light source po-
sition (pre-calibrated). Two images of the sequence
are shown on the top row of �gure 11. The recovered
shape is presented on the second row (33,533 trian-
gles), and the last row shows three views of the mesh
textured by the top left image. Notice that the tex-
tured regions of the object are nicely reconstructed (al-
though these regions have smaller contrast Icontrast).
Small artifacts observable at some places on the top
of the skull are due to the saturation of the pixel val-
ues to zero during shadow passage. This e�ect in-
duces a positive bias on the threshold Ishadow (since
Imin is not as small as it should be). Consequently,
those pixels take on slightly too small shadow times
ts and are triangulated with shadow planes that are
shifted to the left. In e�ect, their �nal 3D location
is slightly o� the surface of the object. One possible
solution to that problem consists of taking multiple
scans of the object with di�erent camera apertures,
and retain each time the range results for the pix-
els that do not su�er from saturation. The overall

10

reconstruction error was estimated to approximately
0.1 mm over a 10 cm large object leading to a rela-
tive error of approximately 0:1%. In order to check
for global distortion, we measured the distances be-
tween three characteristic points on the object: the
tip of the two horns, and the top medium corner of the
mouth. The values obtained from physical measure-
ments on the object and the ones from the retrieved
model agreed within the error of measurement (on the
order of 0.5mm over distances of approximately 12 to
13cm). The sequence of images was 670 frames long,
each image being 320�240 pixels large (acquired with
a grayscale camera).

Experiment 3 - Textured and colored fruits:
Figure 12 shows the reconstruction results on two tex-
tured and colored fruits. The second row shows the
reconstructed shapes. The two meshes with the pixel
images textured on them are shown on the third row.
Similar reconstruction errors to the previous exper-
iment (Experiment 2) were estimated on that data
set. Notice that both textured and colored regions of
the objects were well reconstructed: the local surface
errors was estimated between 0:1 mm and 0:2 mm,
leading to relative errors of approximately 0:1%.

Experiment 4 - Outdoor scene: In this experi-
ment, the sun was the light source. See �gure 13. The
�nal mesh is shown on the bottom �gure (106; 982 tri-
angles). The reconstruction error was estimated to
1mm in standard deviation, leading to a relative error
of approximately 0:2%. The larger reconstruction er-
ror is possibly due to the fact that the sun is not well
approximated by a point light source (as discussed in
Appendix C). Once again, there was no noticeable
global deformation induced by calibration. After �t-
ting a quadratic model to sets of points on the planes,
we only witnessed a decrease of approximately 5% on
the standard deviation of the residual error. The orig-
inal sequence was 790 images long acquired with a
consumer electronics color camcorder (at 30 Hz). Af-
ter digitization, and de-interlacing, each image was
640�240 pixel large. The di�erent digitalization tech-
nique may also explain the larger reconstruction error.

Experiment 5 - Outdoor scanning of a car:
Figure 14 shows the reconstruction results on scan-
ning a car with the sun. The two planes (ground oor
and back wall) approach was used to infer the shadow
plane (without requiring the sun position). The initial
sequence was 636 frames long acquired with a con-
sumer electronics color video-camera (approximately
20 seconds long). Similarly to Experiment 4, the se-
quence was digitized resulting to 640� 240 pixel large
non-interlaced images. Two images of the sequence
are presented on the top row, as well as two views of
the reconstructed 3D mesh after scanning. The re-
construction errors were estimated to approximately
1 cm, or 0:5% of the size of the car (approximately 3

meters).

4 Conclusion and future work
We have presented a simple, low cost system for 3D

scanning. The system requires very little equipment (a
light source, and a straight edge to cast the shadow)
and is very simple and intuitive to use and to cali-
brate. This technique scales well to large objects and
may be used in brightly lit scenes where most active
lighting methods are impractical (expect synchronized
scanning systems [33]). In outdoor scenarios, the sun
is used as light source and is allowed to move during a
scan. The method requires very little processing and
image storage and has been implemented in real time
(30 Hz) on a Pentium 300MHz machine. The accu-
racies that we obtained on the �nal reconstructions
are reasonable (error at most 0:5% of the size of the
scene). In addition, the �nal outcome is a dense and
conveniently organized coverage of the surface (one
point in space for each pixel in the image), allowing di-
rect triangular meshing and texture mapping. We also
showed that using dual-space geometry enables us to
keep the mathematical formalism simple and compact
throughout the successive steps of the method. An er-
ror analysis was presented together with a description
of a simple technique for merging multiple 3D scans
in order to obtain a better coverage of the scene, and
reduce the estimation error. The overall calibration
procedure, even in the case of multiple scans, is intu-
itive, simple, and accurate.

Our method may be used to construct complete 3D
object models. One may take multiple scans of the
object at di�erent locations in space, and then align
the sets of range images. For that purpose, a number
of algorithms have been explored and shown to yield
excellent results [3, 21, 40]. The �nal step consists of
constructing the �nal object surface from the aligned
views [1, 17, 40].

It is part of future work to incorporate a geometri-
cal model of extended light source to the shadow edge
detection process, in addition to developing an uncal-
ibrated (projective) version of the method. One step
towards an uncalibrated system may be found in [9].
In this paper, we study the case of 3D reconstruction
from a set of planar shadows when there is no cali-
brated background plane in the scene.

A Dual-space formalism

Let (E) = IR3 be the 3D Euclidean space. A plane
� in (E) is uniquely represented by the 3-vector ! =
[!x !y !z]

T such that any point P of coordinate

vector Xc = [Xc Yc Zc]
T (expressed in the camera

reference frame) lies on � if and only if

!;Xc

�
= 1

(h:; :i is the standard scalar product operator). Notice
that !

:
= n=d where n is the unitary normal vector

of the plane and d 6= 0 the plane's distance to the
origin. Let (
) = IR3. Since every point ! 2 (
)

11

Figure 11: Experiment 2 - Scanning of a textured skull

Figure 12: Experiment 3 - Textured and colored fruits

Figure 13: Experiment 4 - Outdoor scanning of an object

Figure 14: Experiment 5 - Outdoor scanning of a car

12

Πa

Πb

λ
bω
aω

λ

Πb

Πa

xω

bω

aω

λ

cO

Yc

Xc

Zc

Dual-Space (Ω)Euclidean space (E)

Image plane

λ zω

yω

Λ

Λ

O

Figure 15: Proposition 1: The direction of the line connecting
two planes vectors !a and !b in dual-space (
) is precisely �,
the coordinate vector of the perspective projection � of the line
of intersection � between the two planes �a and �b in Euclidean
space (E).

corresponds to a unique plane � in (E), we refer to
(
) as the `dual-space'. Conversely, every plane �
that does not contain the origin has a valid coordinate
vector ! in (
). Notice that the set of plane crossing
the origin cannot be parameterized in (
) space, since
the ! diverges to in�nity as d gets closer to zero.

Similarly, a line � on the image plane is represented
by the 3-vector � (up to scale) such that any point p
of coordinates xc = [xc yc 1]T lies on this line if and

only if

�; xc

�
= 0. See [20, 24, 35].

Originally, the dual-space of a given vector space
(E) is de�ned as the set of linear forms on (E) (lin-
ear functions of (E) into the reals IR). See [4]. In
the case where (E) is the three dimensional Euclidean
space, each linear form may be interpreted as a plane
� in space that is typically parameterized by a homo-
geneous 4-vector � = [�1 �2 �3 �4]

T . A point P

of homogeneous coordinates X = [X Y Z 1]T lies
on a generic plane � of coordinates � if and only if

�;X

�
= 0 (see [12]). Our !�parameterization dif-

fers from the conventional parameterization in that it
does not allow to represent planes crossing the origin
(the correspondence between the two parameteriza-
tions is ! = �[�1 �2 �3]

T =�4, therefore �4 6= 0).
However, that does not constitute a limitation in our
application since none of the planes we need to param-
eterize are allowed to cross the origin (as discussed in
sections 2.2 and 2.6). Furthermore, this new repre-
sentation exhibits useful properties allowing to natu-
rally relate objects in 3D (planes, lines and points) to
their perspective projections on the image plane (lines
and points) in addition to providing very compact an-
alytical results in error sensitivity analysis.

The following proposition constitutes the major
property associated to our choice of parameterization:

Proposition 1: Consider two planes �a and �b in
space, with respective coordinate vectors !a and !b
(!a 6= !b), and let � = �a\�b be the line of intersec-

tion between them. Let � be the perspective projec-
tion of � on the image plane, and � its representative
vector. Then � is parallel to !a � !b (see �gure 15).
In other words, !a�!b is a valid coordinate vector of
the line �.

Proof: Let P 2 � and let p be the projection of
P on the image plane. Call X = [X Y Z]T and

x = 1
Z
X the respective coordinates of P and p. We

successively have:

P 2 � ()

�
P 2 �a

P 2 �b

()

�

!a; X

�
= 1

!b; X
�

= 1
=) h!a � !b; xi = 0:

Therefore (!a�!b) is a representative vector of � and

must be parallel to �. �
Consequently, the coordinate vector ! of any plane

� containing the line � will lie on the line connecting
!a and !b in dual-space (
). We denote that line

by �̂ and call it the dual image of �. The following
de�nition generalizes that concept of dual image:

De�nition: Let A be a submanifold of (E) (e.g. a
point, line, plane, surface or curve). The dual image

Â of A is de�ned as the set coordinates vectors !
in dual-space (
) representing the tangent planes to
A. Following that standard de�nition (see [12]), the
dual images of points, lines and planes in (E) may be
shown to be respectively planes, lines and points in
dual-space (
), as illustrated in �gure 16. Further
properties regarding non-linear sub-manifolds may be
observed, such as for quadric surfaces in [15].

B Proof of h
S
=d

h
= 1�

!
h
; X

S

�

Since !h is the coordinate vector of the plane �h,
the vector nh = dh !h is the normal vector of the plane
�h in the camera reference frame (see �gure 8). Let P
be a point in Euclidean space (E) of coordinate vector

X. The quantity dh �

nh; X

�
is then the (algebraic)

orthogonal distance of P to �h (positive quantity if the
P is on the side of the camera, negative otherwise).

In particular, if P lies on �h, then

nh; X

�
= dh,

which is equivalent to

!h; X

�
= 1. The orthogonal

distance of the light source S to �h is denoted hS on
�gure 8. Therefore hS = dh�

nh; X

�
, or equivalently

1�

!h; XS

�
= hS=dh. �

C Sensitivity Analysis
This appendix presents a complete error analysis

for the whole reconstruction scheme. As �rst men-
tioned in section 2, the method proposes to associate
to every pixel xc the time instant ts(xc) at which the
shadow crosses that particular pixel. That given time
corresponds to the shadow plane �(ts(xc)) in space (of
coordinate vector !c), used at the triangulation step

13

cO Y

X

Z

cO Y

X

Z

cO Y

X

Z

ω

P

xω

zω

yωO

xω

zω

yωO

xω

zω

yωO

Λ

λ

Π

P

Λ

Euclidean space (E)

Π =

x

Dual-Space (Ω)

Figure 16: Duality principle: The dual images of a plane �,
a line � and a point P . Notice that the perspective projection �
of the line � is directly observable in dual-space as the direction
vector of its dual image �̂. Similarly, the coordinate vector x of
the projection of P is precisely the normal vector the plane P̂
(dual image of P).

to retrieve the coordinates of the point P in space
(see �gure 2). In addition, at every time instant t, a
shadow plane �(t) is estimated based on two line seg-
ments �h(t) and �v(t) extracted from the image plane
(see section 2.4).

Therefore, one clearly identi�es two possible
sources of error a�ecting the overall reconstruction:
errors in localizing the two edges �h(t) and �v(t) lead-
ing to error in estimating the shadow plane �(t) (or
error on the vector !(t)), and errors in �nding the
shadow time ts(xc) (at every pixel xc) leading to an
error in shadow plane assignment.

Experimentally, we found that the error coming
from spatial processing (shadow plane localization)
was much smaller than the one coming from tempo-
ral processing (shadow time computation). In other
words, in all the experiments we carried out, the
shadow planes were localized to such a degree of accu-
racy that the errors induced by the noise on !c were
negligible compared to the errors induced by the noise
on ts(xc). This experimental observation is reasonable
because the shadow edges �h(t) and �v(t) are recov-
ered by �tting lines through many points on the image
plane (an order of 50 points per line) while shadow
time ts(xc) is estimated on a basis of a single pixel.
Notice that this is experiment dependent, and may
very well not be true if fewer points were used to ex-
tract the shadow edges, or if the image were more
noisy, or more distorted. In those cases, both error
terms should be retained. In the present analysis, we

propose to derive an expression of the variance of the
error in depth estimation �2Zc

assuming that the main
source of noise comes from temporal processing. In the
experimental section, we verify that the �nal variance
expression agrees numerically with accuracies achieved
on real scan data.

C.1 Derivation of the depth variance �
2
Zc

Every pixel xc on the image sees the shadow pass-
ing at time a ts(xc), called the shadow time, that is
estimated through temporal processing (see section
2.4). This estimation is naturally subject to errors,
leading to inaccuracies in the �nal 3D reconstruction.
The purpose of that analysis is to study how damag-
ing those errors truly are on the �nal structure, and
quantify them. Assume that for a given pixel xc, an
additive temporal error Æts(xc) is made on its shadow
time estimate: ~ts(xc) = ts(xc) + Æts(xc). This typ-
ically leads the algorithm to assign to the pixel xc
the \wrong" shadow plane �(ts(xc) + Æts(xc)) for the
geometrical triangulation step. Equivalently, one can
think that the plane �(ts(xc) + Æts) has been associ-
ated with the \wrong" pixel xc in the image. Although
it does not change anything to the problem, that way
of centering the reasoning onto the shadow plane in-
stead of the pixel actually signi�cantly simpli�es the
whole analysis. Indeed, as we will show in the follow-
ing, if we assign the noise to the pixel location itself,
the time variable can then be omitted.

To be more precise, let us �rst de�ne v(xc) =
[vx(xc) vy(xc)]

T to be the velocity vector of the
shadow at the pixel xc that is orthogonal to the
shadow edge. Then, the closest point to xc that has
truly been lit by the shadow plane �(ts(xc)+ Æts(xc))
is xc + Æts(xc) v(xc). Therefore, by picking xc in-
stead, we introduce an additive pixel error Æxc

:
=

�Æts(xc) v(xc). This is the equivalent noise that can
be attributed to the pixel location xc before triangu-
lation.

One can then see that this equivalent image coor-
dinate noise is naturally related to the speed of the
shadow. Indeed, even if we assume that the time esti-
mation error Æts is identical for every pixel in the im-
age, the corresponding pixel error Æxc is generally not
uniform, neither in direction, nor in magnitude. Typ-
ically, fast moving shadow regions will be subject to
larger errors than slow moving shadow regions. Vari-
ations in apparent shadow speed can be caused by a
change in the actual speed at which the stick is moved,
a change in local surface orientation of the scene, or
both.

Before triangulation, the pixel coordinates have to
be normalized by the intrinsic parameters of the cam-
era. Let us assume, for simplicity in the notation,
that xc = [xc yc 1]T is directly the normalized, ho-
mogeneous coordinate vector associated to the pixel.
The two coordinates xc and yc are a�ected by the

14

c c 0I(x , y , t)

t (x)cs

c cI(x , y , t)∆

0t -1

c c 0I(x , y , t -1)

1= I
σ

I

δI

σt

t∆

0t

∆

∆

0= I

t

Figure 17: Estimation error on the shadow time: The
shadow time ts(xc) is estimated by linearly interpolating the
di�erence temporal brightness function �I(xc; yc; t) between
times t0 � 1 and t0. The pixel noise (of standard deviation
�I) on I0

:

= �I(xc; yc; t0 � 1) and I1

:

= �I(xc; yc; t0) induces
errors on the estimation of �t, or equivalently ts(xc). This error
has variance �2t .

error vector Æxc whose variance-covariance matrix is
denoted �xc (a 2 � 2 matrix). Let us derive an ex-
pression for that matrix as a function of the image
brightness noise.

Lemma: Let �I be the standard deviation of the
image brightness noise (estimated experimentally).
We can write �xc as a function of the image gradi-

ent rI(xc) at pixel xc at time t = ts(xc):

�xc =
�2I

f2c krI(xc)k
2

�
cos2 ' cos' sin'

cos' sin' sin2 '

�
(14)

where fc is the focal length of the camera (in pixels),

rI(xc) is the gradient vector of the image brightness
at the shadow, and ' the orientation angle of that
vector (orientation of the shadow edge at pixel xc):

rI(xc) =

�
Ix(xc)
Iy(xc)

�
= krI(xc)k

�
cos'
sin'

�

where:

Ix(xc)
:
=

@I(x; t)

@x

����
x=xc;t=ts(xc)

Iy(xc)
:
=

@I(x; t)

@y

����
x=xc;t=ts(xc)

Proof of lemma (eq. 14): Figure 17 shows the
principle of computing the shadow time ts(xc) from
the di�erence image �I (refer to section 2.5). For
clarity in the notation, de�ne I0

:
= �I(xc; yc; t0 � 1)

and I1
:
= �I(xc; yc; t0). Then, the shadow time ts(xc)

is given by:

ts(xc) = t0 ��t

where:

�t
:
=

I1

I1 � I0

Let �2t be the variance of the error Æts(xc) attached
to the shadow time ts(xc). In normal sampling condi-
tions (if the temporal brightness is suÆciently sampled
within the shadow transition area), the same error is
on the variable �t, and therefore �t may be directly
expressed as a function of �I , the variance of pixel
noise on I0 and I1:

�2t =

 �
@�t

@I0

�2

+

�
@�t

@I1

�2
!
�2I

�2t =
I20 + I21
ÆI4

�2I (15)

where ÆI
:
= I1 � I0 is the temporal brightness varia-

tion at the zero crossing (or equivalently at the shadow
time). One may notice from equation 15 that, as the
brightness di�erence ÆI increases, the error in shadow
time decreases. That is a very intuitive behavior given
that higher shadow contrasts should give rise to bet-
ter accuracies. Notice however that the variance �2t
is not only a function of ÆI but also of the absolute
brightness values I0 and I1. One may then consider
the maximum value of �2t for a �xed ÆI over all I0 and
I1, subject to the constraint I1 = I0 + ÆI :

�2t = max
0<I0<�ÆI

�
2 I20 + 2 I0 ÆI + ÆI2

ÆI4

�
�2I

leading to the following simpli�ed expression for �2t :

�2t =
�2I
ÆI2

(16)

To motivate that simpli�cation, one may notice that
the minimum and maximum values of �2t over all val-
ues I0 and I1 are quite similar anyway: �2I=(2 ÆI

2)
(minimum) and �2I=ÆI

2 (maximum). The maximum
may be thought as an upper bound on the error. No-
tice that ÆI is nothing but the �rst temporal derivative
of the image brightness at the pixel xc, at the shadow
time:

ÆI =
@I(x; t)

@t

����
x=xc;t=ts(xc)

This temporal derivative may also be expressed as
a function of the image gradient vector rI(xc) =

15

[Ix(xc) Iy(xc)]
T and the shadow edge velocity vec-

tor v(xc) = [vx(xc) vy(xc)]
T :

ÆI = �rI(xc)
T v(xc) = �Ix(xc) vx(xc)� Iy(xc) vy(xc)

By de�nition, the edge velocity vector v(xc) is or-
thogonal to the shadow edge. Therefore it may be
also written as a direct function of the gradient vector
rI(xc):

v(xc) = s kv(xc)k
rI(xc)

krI(xc)k
= s kv(xc)k

�
cos'
sin'

�

where s is either +1 or �1 depending on the direction
of motion of the edge. Therefore,

ÆI = (�s)
rI(xc)

T
rI(xc)

krI(xc)k
kv(xc)k

ÆI = (�s) krI(xc)k kv(xc)k (17)

Consequently, by substituting (17) into (16), we ob-
tain a new expression for the temporal variance �2t :

�2t =
�2I

krI(xc)k2 kv(xc)k2

Then, the error vector Æxc transfered on the image
plane is also related to the shadow edge velocity v(xc)
and the temporal error Æts(xc):

Æxc = �Æts(xc) v(xc)

Æxc = (�s) kv(xc)k Æts(xc)

�
cos'
sin'

�

Then, the variance-covariance matrix of the noise Æxc
is (recall that s2 = 1):

�xc = kv(xc)k
2 �2t

�
cos2 ' cos' sin'

cos' sin' sin2 '

�

�xc =
�2I

krI(xc)k2

�
cos2 ' cos' sin'

cos' sin' sin2 '

�

Finally, note that this relation is valid if xc is expressed
in pixel coordinates. After normalization, this vari-
ance must be scaled by the square of the inverse of
focal length fc:

�xc =
�2I

f2c krI(xc)k
2

�
cos2 ' cos' sin'

cos' sin' sin2 '

�

which ends the proof of the lemma (eq. 14). �

Notice that if the shadow edge is roughly vertical
on the image, one may assume ' = 0, and therefore
simplify quite signi�cantly the variance expression:

�xc =
�2I

f2c I
2
x(xc)

�
1 0
0 0

�

In that case, we reach the very intuitive result that
only the �rst coordinate of xc is a�ected by noise.

Since �xc in inversely proportional to the image
gradient, accuracy improves with shadow edge sharp-
ness. In addition, observe that �xc does not directly
depend upon the local shadow speed. Therefore, de-
creasing the scanning speed would not increase accu-
racy. However, for the analysis leading to equation
14 to remain valid, the temporal pixel pro�le must
be suÆciently sampled within the transition area of
the shadow edge (the penumbra). Therefore, if the
shadow edge were sharper, the scanning should also
be slower so that the temporal pro�le at every pixel
would be properly sampled. Further discussions may
be found in section 2.7. Another consequence of equa-
tion 14 is that one may experimentally compute the
variance �xc of the transfered error directly from the

original input sequence: rI(xc) is the image gradient
at the shadow edge and �I is the pixel noise on the
image. In addition, assuming that the sharpness of
the shadow is approximately uniform over the entire
image, then �xc may also be assumed to be uniform
to a �rst approximation. That constitutes an addi-
tional simpli�cation that does not have to be retained
in practice.

The �nal expression of the variance �2Zc

of the error
attached to the depth estimate Zc may be written as
follows:

�2Zc

=

�
@Zc

@xc

�
�xc

�
@Zc

@xc

�T

One may derive the expression for the Jacobian matrix�
@Zc

@xc

�
from the triangulation equation 8:

Zc =
1

h!c; xci
=)

@Zc

@xc
= Z2

c

�
!x !y

�
where !x and !y are the two �rst coordinates of the
shadow plane vector !c. This allows to expand the
expression of �2Zc

:

�2Zc

= Z4
c

�
!x cos'+ !y sin'

fc krI(xc)k

�2

�2I (18)

This expression is directly computable from the orig-
inal input sequence, and used for scan merging (refer
to section 2.8). Several observations regarding that
expression may be found in section 2.7.

16

C.2 System Design Issues
Let us consider the scanning setup as it is presented

on �gure 8 where the scan is done roughly vertically.
In that case, ' � 0, and I2y (xc) � I2x(xc) (see �gure

10). Then, the depth variance expression (18) may be
further simpli�ed to:

�2Zc

�

Z4
c !

2
x

f2c I
2
x(xc)

�2I (19)

It appears then that the �rst coordinate !x of the
shadow plane vector !c carries most of the variations
in accuracy of reconstruction within a given scan.
When designing the scanning system, an important
issue is to choose the spatial con�gurations of the
camera and the light source that maximize the over-
all quality of reconstruction, or equivalently minimize
j!xj. In order to address this issue, it is necessary to
further expand the term !x, and study its dependence
upon the geometrical variables characterizing the sys-
tem. Since the light source position is of interest here,
let us consider the case where a single plane �h is
used for scanning. In that case, the shadow plane vec-
tor !c appears as a function of the light source posi-
tion vector XS , as stated by equation 6. Assume that
�h = [�x �y �z]

T is normalized such that �x = 1. In
addition, assume that the (Oc; Xc) axis of the camera
is approximately parallel to the plane �h (as suggested
in �gure 8). This implies that the �rst coordinate of
!h is zero. Then, the �rst coordinate !x of !c reduces
to:

!x =
1�

!h; XS

�

�h; XS

� =
hS=dh

�h; XS

� (20)

where dh and hS are the respective orthogonal dis-
tances of the camera center Oc and the light source S
to the plane �h.

For simpli�cation purposes, let us assume that the
shadow edge �h appears vertically on the image plane,
and let x be its horizontal position (on the image). As
the shadow moves from left to right, x varies from
negative values to positive values, crossing zero when
the shadow is at the center of the image. In that
speci�c scenario, the shadow edge vector reduces to:
�h = [1 0 � x]T simplifying equation 20:

1

!x
=

dh

hS
(XS � xZS) (21)

The problem of maximizing the reconstruction qual-
ity corresponds then to maximizing j1=!xj. Since that
quantity is function of the shadow edge location x, we
may observe that the accuracy of reconstruction is not
uniform throughout the scene for a given scan (unless
the depth of the light source in the camera reference
frame is zero: ZS = 0). A better understanding of

that relation may be achieved by expressing the light
source coordinate vector XS as a function of the an-
gular coordinates �, �, and � de�ning the mutual po-
sitions of the camera and the light source with respect
to the plane �h (see �gure 8):

XS =

2
4 XS

YS
ZS

3
5 =

2
664

hS
cos �
tan�

� hS
sin � sin �
tan�

+ (dd � hS) cos �

hS
cos � sin �
tan�

+ (dd � hS) sin �

3
775

Following this notation, the inverse of !x may be writ-
ten as follows:

1

!x
= dh

�
cos �

tan�
� x

�
cos � sin �

tan�
+
dh � hS

hS
sin �

��

Since during scanning, the shadow edge coordinate x
spans a range of values going from negative to positive
values, we may consider that taking x = 0 gives us an
indication of the \average" reconstruction quality:

1

!x

����
average

�

1

!x

����
x=0

= dh
cos �

tan�

Equation 19 may then be used to infer an expression
for the \average" depth variance:

�2Zc

��
average

�

Z4
c

d2h

tan2 �

cos2 �

�2I
f2c I

2
x(xc)

A next simpli�cation step may be applied, by observ-
ing that the average depth of the scene is approxi-
mately related to the height dh and the tilt angle � of
the camera through the following expression:

Zcjaverage �
dh

sin �

That relation leads us to a new expression for the \av-
erage" �Zc

:

�Zc
javerage � dh

tan�

sin2 � jcos �j

�I

fc jIx(xc)j
(22)

Notice that this quantity may be computed prior to
scanning knowing the geometrical con�guration of the
system. From that expression, it is also possible to
identify optimal con�gurations of the camera and the
light source that maximize the overall quality of the
reconstruction. See section 2.7.

Acknowledgments
This work is supported in part by the California Institute

of Technology; an NSF National Young Investigator Award to

17

P.P.; a STC fund; the Center for Neuromorphic Systems En-
gineering funded by the National Science Foundation at the
California Institute of Technology. We wish to thank all the
colleagues that helped us throughout this work, especially Peter
Schr�oder, Paul Debevec, Wolfgang St�urzlinger, Luis Goncalves,
George Barbastathis and Mario Munich for very useful discus-
sions. Very special thanks go to Silvio Savarese for his work on
the real-time implementation of our algorithm.

References

[1] C.L. Bajaj, F. Bernardini, and G. Xu Xu, \Automatic re-
construction of surfaces and scalar �elds from 3D scans",
In SIGGRAPH '95, Los Angeles, CA, pages 109{118, Au-
gust 1995.

[2] Paul Besl, Advances in Machine Vision, chapter 1 - Active
optical range imaging sensors, pages 1{63, Springer-Verlag,
1989.

[3] P.J. Besl and N.D. McKay, \A method for registration of
3-d shapes", IEEE Transactions on Pattern Analysis and

Machine Intelligence, 14(2):239{256, 1992.

[4] R.L. Bishop and S.I. Goldberg, Tensor analysis on mani-

fold, Dove Publications, 1980.

[5] Sylvain Bougnoux, \From projective to euclidean space un-
der any practical situation, a criticism of self-calibration",
Proc. 6th Int. Conf. Computer Vision, Bombay, India,
pages 790{796, January 1998.

[6] Jean-Yves Bouguet, Visual methods for three-

dimensional modeling, PhD thesis, Califor-
nia Institute of Technology, 1999. Available at:
http://www.vision.caltech.edu/bouguetj/thesis/thesis.html.

[7] Jean-Yves Bouguet and Pietro Perona, \3D Pho-
tography on your Desk", Technical report, Cal-
ifornia Institute of Technology, 1997, available at:
http://www.vision.caltech.edu/bouguetj/ICCV98.

[8] Jean-Yves Bouguet and Pietro Perona, \3D Photography
on your Desk", Proc. 6th Int. Conf. Computer Vision,

Bombay, India, pages 43{50, January 1998.

[9] Jean-Yves Bouguet, Markus Weber, and Pietro Perona,
\What do planar shadows tell us about scene geometry?",
Proc. IEEE Comput. Soc. Conf. Comput. Vision and Pat-

tern Recogn., I:514{520, 1999.

[10] D. C. Brown, \Analytical calibration of close range cam-
eras", Proc. Symp. Close Range Photogrammetry, Mel-

bourne, FL, 1971.

[11] D. C. Brown, \Calibration of close range cameras",
Proc. 12th Congress Int. Soc. Photogrammetry, Ottawa,

Canada, 1972.

[12] J.W. Bruce, \Lines, surfaces and duality", Technical re-
port, Dept. of Pure Mathematics, University of Liverpool,
1992.

[13] J.F. Canny, \A computational approach to edge detec-
tion", IEEE Transactions on Pattern Analysis and Ma-

chine Intelligence, 8(6):679{698, 1986.

[14] B. Caprile and V. Torre, \Using vanishing points for cam-
era calibration", IJCV, 4(2):127{140, March 1990.

[15] Geo�rey Cross and Andrew Zisserman, \Quadric Recon-
struction from Dual-Space Geometry", Proc. 6th Int.

Conf. Computer Vision, Bombay, India, pages 25{31,
1998.

[16] Brian Curless and Marc Levoy, \Better optical triangu-
lation through spacetime analysis", Proc. 5th Int. Conf.

Computer Vision, Boston, USA, pages 987{993, 1995.

[17] Brian Curless and Marc Levoy, \A volumetric method
for building complex models from range images", SIG-

GRAPH96, Computer Graphics Proceedings, 1996.

[18] K. Daniilidis and J. Ernst, \Active intrinsic calibration us-
ing vanishing points", PRL, 17(11):1179{1189, September
1996.

[19] O.D. Faugeras, Three dimensional vision, a geometric

viewpoint, MIT Press, 1993.

[20] Olivier Faugeras and Bernard Mourrain, \On the geometry
and algebra of the point and line correspondence between
n images", Proc. 5th Int. Conf. Computer Vision, Boston,

USA, pages 851{856, 1994.

[21] H. Gagnon, M. Soucy, R. Bergevin, and D. Laurendeau,
\Registration of multiple range views for automatic 3-D
model building", Proc. IEEE Comput. Soc. Conf. Comput.

Vision and Pattern Recogn., pages 581{586, June 1994.

[22] A.A. Goshtasby, S. Nambala, W.G. deRijk, and S.D.
Campbell, \A System for Digital Reconstruction of Gyp-
sum Dental Casts", IEEE Transactions on Medical Imag-

ing, 16(5):664{674, October 1987.

[23] A. Gruss, S. Tada, and T. Kanade, \A VLSI Smart Sensor
for Fast Range Imaging", In DARPA93, pages 977{986,
1993.

[24] Richard I. Hartley, \A linear method for reconstruction
from lines and points", Proc. 5th Int. Conf. Computer

Vision, Boston, USA, pages 882{887, 1994.

[25] Janne Heikkila and Olli Silven, \A four-step camera cal-
ibration procedure with implicit image correction", Proc.

IEEE Comput. Soc. Conf. Comput. Vision and Pattern

Recogn., pages 1106{1112, 1997.

[26] R. A. Jarvis, \A perspective on range-�nding techniques
for computer vision", IEEE Trans. Pattern Analysis

Mach. Intell., 5:122{139, March 1983.

[27] T. Kanade, A. Gruss, and L. Carley, \A Very Fast
VLSI Range�nder", In IEEE International Conference on

Robotics and Automation, volume 39, pages 1322{1329,
April 1991.

[28] Reinhard Koch, Marc Pollefeys, and Luc Van Gool, \Multi
viewpoint stereo from uncalibrated video sequence", Proc.
5th European Conf. Computer Vision, Freiburg, Germany,
pages 55{71, June 1998.

[29] Jurgen R. Meyer-Arendt, \Radiometry and photometry:
Units and conversion factors", Applied Optics, 7(10):2081{
2084, October 1968.

[30] Athanasios Papoulis, Probability, Random Variables and

Stochastic Processes, Mac Graw Hill, 1991, Third Edition,
page 187.

[31] Marc Pollefeys, Reinhard Koch, and Luc Van Gol, \Self-
calibration and metric reconstruction in spite of varying
and unknown internal camera parameters", Proc. 6th Int.

Conf. Computer Vision, Bombay, India, pages 90{95, Jan-
uary 1998.

[32] Marc Pollefeys and Luc Van Gool, \A strati�ed approach
to metric self-calibration", Proc. IEEE Comput. Soc.

Conf. Comput. Vision and Pattern Recogn., pages 407{
412, 1997.

[33] Riou, \High resolution digital 3-d imaging of large struc-
tures", SPIE Proceedings, 3-D Image Capture, San Jose,
3023:109{118, February 1997.

18

[34] Silvio Savarese, \Scansione tridimensionale con metodi a
luce debolmente strutturata", Tesi di Laurea, Universita

degli Studi di Napoli Federico II, 1998.

[35] A. Shashua and M.Werman, \Trilinearity of three perspec-
tive views and its associated tensor", Proc. 5th Int. Conf.

Computer Vision, Boston, USA, pages 920{925, 1995.

[36] G.P. Stein, \Accurate Internal Camera Calibration Using
Rotation, with Analysis of Sources of Error", In Proc. 5th

Int. Conf. Computer Vision, Boston, USA, pages 230{236,
1995.

[37] Peter F. Sturm and Stephen J. Maybank, \On plane-based
camera calibration: A general algorithm, singularities, ap-
plications", Proc. IEEE Comput. Soc. Conf. Comput. Vi-

sion and Pattern Recogn., I:432{437, 1999.

[38] Marjan Trobina, \Error model of a coded-light range
sensor", Technical Report BIWI-TR-164, ETH-Zentrum,
1995.

[39] R.Y. Tsai, \A versatile camera calibration technique for
high accuracy 3d machine vision metrology using o�-the-
shelf tv cameras and lenses", IEEE J. Robotics Automat.,
RA-3(4):323{344, 1987.

[40] G. Turk and M. Levoy, \Zippered polygon meshes from
range images", In SIGGRAPH '94, pages 311{318, July
1994.

[41] John W. T. Walsh, Photometry, Dover, NY, 1965.

[42] L.L. Wang and W.H. Tsai, \Computing camera param-
eters using vanishing-line information from a rectangular
parallelepiped", MVA, 3(3):129{141, 1990.

[43] Y.F. Wang, \Characterizing three-dimensional surface
structures from visual images", IEEE Transactions on

Pattern Analysis and Machine Intelligence, 13(1):52{60,
1991.

19

A Volumetric Method for Building Complex Models from Range Images

Brian Curless and Marc Levoy
Stanford University

Abstract
A number of techniques have been developed for reconstructing sur-
faces by integrating groups of aligned range images. A desirable
set of properties for such algorithms includes: incremental updating,
representation of directional uncertainty, the ability to fill gaps in the
reconstruction, and robustness in the presence of outliers. Prior algo-
rithms possess subsets of these properties. In this paper, we present a
volumetric method for integrating range images that possesses all of
these properties.

Our volumetric representation consists of a cumulative weighted
signed distance function. Working with one range image at a time,
we first scan-convert it to a distance function, then combine this with
the data already acquired using a simple additive scheme. To achieve
space efficiency, we employ a run-length encoding of the volume. To
achieve time efficiency, we resample the range image to align with the
voxel grid and traverse the range and voxel scanlines synchronously.
We generate the final manifold by extracting an isosurface from the
volumetric grid. We show that under certain assumptions, this isosur-
face is optimal in the least squares sense. To fill gaps in the model,
we tessellate over the boundaries between regions seen to be empty
and regions never observed.

Using this method, we are able to integrate a large number of range
images (as many as 70) yielding seamless, high-detail models of up
to 2.6 million triangles.

CR Categories: I.3.5 [Computer Graphics] Computational Geome-
try and Object Modeling
Additional keywords: Surface fitting, three-dimensional shape re-
covery, range image integration, isosurface extraction

1 Introduction
Recent years have witnessed a rise in the availability of fast, accu-
rate range scanners. These range scanners have provided data for
applications such as medicine, reverse engineering, and digital film-
making. Many of these devices generate range images; i.e., they pro-
duce depth values on a regular sampling lattice. Figure 1 illustrates
how an optical triangulation scanner can be used to acquire a range
image. By connecting nearest neighbors with triangular elements,
one can construct a range surface as shown in Figure 1d. Range im-
ages are typically formed by sweeping a 1D or 2D sensor linearly
across an object or circularly around it, and generally do not contain
enough information to reconstruct the entire object being scanned.
Accordingly, we require algorithms that can merge multiple range

Authors’ Address: Computer Science Department, Stanford University,
Stanford, CA 94305

E-mail: fcurless,levoyg@cs.stanford.edu
World Wide Web: http://www-graphics.stanford.edu

images into a single description of the surface. A set of desirable
properties for such a surface reconstruction algorithm includes:

� Representation of range uncertainty. The data in range images
typically have asymmetric error distributions with primary di-
rections along sensor lines of sight, as illustrated for optical tri-
angulation in Figure 1a. The method of range integration should
reflect this fact.

� Utilization of all range data, including redundant observations
of each object surface. If properly used, this redundancy can
reduce sensor noise.

� Incremental and order independent updating. Incremental up-
dates allow us to obtain a reconstruction after each scan or small
set of scans and allow us to choose the next best orientation for
scanning. Order independence is desirable to ensure that re-
sults are not biased by earlier scans. Together, they allow for
straightforward parallelization.

� Time and space efficiency. Complex objects may require many
range images in order to build a detailed model. The range
images and the model must be represented efficiently and pro-
cessed quickly to make the algorithm practical.

� Robustness. Outliers and systematic range distortions can cre-
ate challenging situations for reconstruction algorithms. A ro-
bust algorithm needs to handle these situations without catas-
trophic failures such as holes in surfaces and self-intersecting
surfaces.

� No restrictions on topological type. The algorithm should not
assume that the object is of a particular genus. Simplifying as-
sumptions such as “the object is homeomorphic to a sphere”
yield useful results in only a restricted class of problems.

� Ability to fill holes in the reconstruction. Given a set of range
images that do not completely cover the object, the surface re-
construction will necessarily be incomplete. For some objects,
no amount of scanning would completely cover the object, be-
cause some surfaces may be inaccessible to the sensor. In these
cases, we desire an algorithm that can automatically fill these
holes with plausible surfaces, yielding a model that is both “wa-
tertight” and esthetically pleasing.

In this paper, we present a volumetric method for integrating range
images that possesses all of these properties. In the next section, we
review some previous work in the area of surface reconstruction. In
section 3, we describe the core of our volumetric algorithm. In sec-
tion 4, we show how this algorithm can be used to fill gaps in the re-
construction using knowledge about the emptiness of space. Next, in
section 5, we describe how we implemented our volumetric approach
so as to keep time and space costs reasonable. In section 6, we show
the results of surface reconstruction from many range images of com-
plex objects. Finally, in section 7 we conclude and discuss limitations
and future directions.

2 Previous work
Surface reconstruction from dense range data has been an active area
of research for several decades. The strategies have proceeded along

Surface

CCD

Laser

(a)

Direction of travel

Object

CCD

CCD image
 plane

Laser

Cylindrical lens

Laser
sheet

σz

σx

(b) (c) (d)

Figure 1. From optical triangulation to a range surface. (a) In 2D, a narrow laser beam illuminates a surface, and a linear sensor images the reflection from an
object. The center of the image pulse maps to the center of the laser, yielding a range value. The uncertainty, �x, in determining the center of the pulse results
in range uncertainty, �z along the laser’s line of sight. When using the spacetime analysis for optical triangulation [6], the uncertainties run along the lines
of sight of the CCD. (b) In 3D, a laser stripe triangulation scanner first spreads the laser beam into a sheet of light with a cylindrical lens. The CCD observes
the reflected stripe from which a depth profile is computed. The object sweeps through the field of view, yielding a range image. Other scanner configurations
rotate the object to obtain a cylindrical scan or sweep a laser beam or stripe over a stationary object. (c) A range image obtained from the scanner in (b) is a
collection of points with regular spacing. (d) By connecting nearest neighbors with triangles, we create a piecewise linear range surface.

two basic directions: reconstruction from unorganized points, and
reconstruction that exploits the underlying structure of the acquired
data. These two strategies can be further subdivided according to
whether they operate by reconstructing parametric surfaces or by re-
constructing an implicit function.

A major advantage of the unorganized points algorithms is the fact
that they do not make any prior assumptions about connectivity of
points. In the absence of range images or contours to provide connec-
tivity cues, these algorithms are the only recourse. Among the para-
metric surface approaches, Boissanat [2] describes a method for De-
launay triangulation of a set of points in 3-space. Edelsbrunner and
Mücke [9] generalize the notion of a convex hull to create surfaces
called alpha-shapes. Examples of implicit surface reconstruction in-
clude the method of Hoppe, et al [16] for generating a signed distance
function followed by an isosurface extraction. More recently, Bajaj,
et al [1] used alpha-shapes to construct a signed distance function to
which they fit implicit polynomials. Although unorganized points al-
gorithms are widely applicable, they discard useful information such
as surface normal and reliability estimates. As a result, these algo-
rithms are well-behaved in smooth regions of surfaces, but they are
not always robust in regions of high curvature and in the presence of
systematic range distortions and outliers.

Among the structured data algorithms, several parametric ap-
proaches have been proposed, most of them operating on range
images in a polygonal domain. Soucy and Laurendeau [25] de-
scribe a method using Venn diagrams to identify overlapping data re-
gions, followed by re-parameterization and merging of regions. Turk
and Levoy [30] devised an incremental algorithm that updates a re-
construction by eroding redundant geometry, followed by zippering
along the remaining boundaries, and finally a consensus step that
reintroduces the original geometry to establish final vertex positions.
Rutishauser, et al [24] use errors along the sensor’s lines of sight
to establish consensus surface positions followed by a re-tessellation
that incorporates redundant data. These algorithms typically perform
better than unorganized point algorithms, but they can still fail catas-
trophically in areas of high curvature, as exemplified in Figure 9.

Several algorithms have been proposed for integrating structured
data to generate implicit functions. These algorithms can be classified
as to whether voxels are assigned one of two (or three) states or are
samples of a continuous function. Among the discrete-state volumet-
ric algorithms, Connolly [4] casts rays from a range image accessed
as a quad-tree into a voxel grid stored as an octree, and generates
results for synthetic data. Chien, et al [3] efficiently generate octree
models under the severe assumption that all views are taken from the

directions corresponding to the 6 faces of a cube. Li and Crebbin [19]
and Tarbox and Gottschlich [28] also describe methods for generat-
ing binary voxel grids from range images. None of these methods
has been used to generate surfaces. Further, without an underlying
continuous function, there are no mechanism for representing range
uncertainty or for combining overlapping, noisy range surfaces.

The last category of our taxonomy consists of implicit function
methods that use samples of a continuous function to combine struc-
tured data. Our method falls into this category. Previous efforts in this
area include the work of Grosso, et al [12], who generate depth maps
from stereo and average them into a volume with occupancy ramps
of varying slopes corresponding to uncertainty measures; they do not,
however, perform a final surface extraction. Succi, et al [26] create
depth maps from stereo and optical flow and integrate them volumet-
rically using a straight average. The details of his method are unclear,
but they appear to extract an isosurface at an arbitrary threshold. In
both the Grosso and Succi papers, the range maps are sparse, the di-
rections of range uncertainty are not characterized, they use no time
or space optimizations, and the final models are of low resolution.
Recently, Hilton, et al [14] have developed a method similar to ours
in that it uses weighted signed distance functions for merging range
images, but it does not address directions of sensor uncertainty, incre-
mental updating, space efficiency, and characterization of the whole
space for potential hole filling, all of which we believe are crucial for
the success of this approach.

Other relevant work includes the method of probabilistic occu-
pancy grids developed by Elfes and Matthies [10]. Their volumetric
space is a scalar probability field which they update using a Bayesian
formulation. The results have been used for robot navigation, but
not for surface extraction. A difficulty with this technique is the fact
that the best description of the surface lies at the peak or ridge of
the probability function, and the problem of ridge-finding is not one
with robust solutions [8]. This is one of our primary motivations for
taking an isosurface approach in the next section: it leverages off of
well-behaved surface extraction algorithms.

The discrete-state implicit function algorithms described above
also have much in common with the methods of extracting volumes
from silhouettes [15] [21] [23] [27]. The idea of using backdrops
to help carve out the emptiness of space is one we demonstrate in
section 4.

3 Volumetric integration
Our algorithm employs a continuous implicit function, D(x), rep-
resented by samples. The function we represent is the weighted

2

Sensor

Near Far
x

x

Volume
Range surface

Zero-crossing
(isosurface)

x

x

New zero-crossing

Distance
from

surface

(a) (b)

Figure 2. Unweighted signed distance functions in 3D. (a) A range sensor
looking down the x-axis observes a range image, shown here as a recon-
structed range surface. Following one line of sight down the x-axis, we
can generate a signed distance function as shown. The zero crossing of
this function is a point on the range surface. (b) The range sensor re-
peats the measurement, but noise in the range sensing process results in
a slightly different range surface. In general, the second surface would
interpenetrate the first, but we have shown it as an offset from the first
surface for purposes of illustration. Following the same line of sight as
before, we obtain another signed distance function. By summing these
functions, we arrive at a cumulative function with a new zero crossing
positioned midway between the original range measurements.

signed distance of each point x to the nearest range surface along
the line of sight to the sensor. We construct this function by com-
bining signed distance functions d1(x), d2(x), ... dn(x) and weight
functions w1(x), w2(x), ... wn(x) obtained from range images 1 ...
n. Our combining rules give us for each voxel a cumulative signed
distance function, D(x), and a cumulative weight W (x). We repre-
sent these functions on a discrete voxel grid and extract an isosurface
corresponding to D(x) = 0. Under a certain set of assumptions, this
isosurface is optimal in the least squares sense. A full proof of this
optimality is beyond the scope of this paper, but a sketch appears in
appendix A.

Figure 2 illustrates the principle of combining unweighted signed
distances for the simple case of two range surfaces sampled from the
same direction. Note that the resulting isosurface would be the sur-
face created by averaging the two range surfaces along the sensor’s
lines of sight. In general, however, weights are necessary to repre-
sent variations in certainty across the range surfaces. The choice of
weights should be specific to the range scanning technology. For op-
tical triangulation scanners, for example, Soucy [25] and Turk [30]
make the weight depend on the dot product between each vertex nor-
mal and the viewing direction, reflecting greater uncertainty when the
illumination is at grazing angles to the surface. Turk also argues that
the range data at the boundaries of the mesh typically have greater
uncertainty, requiring more down-weighting. We adopt these same
weighting schemes for our optical triangulation range data.

Figure 3 illustrates the construction and usage of the signed dis-
tance and weight functions in 1D. In Figure 3a, the sensor is posi-
tioned at the origin looking down the +x axis and has taken two mea-
surements, r1 and r2. The signed distance profiles, d1(x) and d2(x)
may extend indefinitely in either direction, but the weight functions,
w1(x) and w2(x), taper off behind the range points for reasons dis-
cussed below.

Figure 3b is the weighted combination of the two profiles. The
combination rules are straightforward:

D(x) =
�wi(x)di(x)

�wi(x)
(1)

W (x) = �wi(x) (2)

r
1

d
1
(x)

w
1
(x)

r
2

w
2
(x)

d
2
(x)

W(x)

D(x)

R

(a) (b)

x x
Sensor

Figure 3. Signed distance and weight functions in one dimension. (a) The
sensor looks down the x-axis and takes two measurements, r1 and r2 .
d1(x) and d2(x) are the signed distance profiles, and w1(x) and w2(x)
are the weight functions. In 1D, we might expect two sensor measure-
ments to have the same weight magnitudes, but we have shown them to be
of different magnitude here to illustrate how the profiles combine in the
general case. (b) D(x) is a weighted combination of d1(x) and d2(x),
and W (x) is the sum of the weight functions. Given this formulation, the
zero-crossing, R, becomes the weighted combination of r1 and r2 and
represents our best guess of the location of the surface. In practice, we
truncate the distance ramps and weights to the vicinity of the range points.

where, di(x) and wi(x) are the signed distance and weight functions
from the ith range image.

Expressed as an incremental calculation, the rules are:

Di+1(x) =
Wi(x)Di(x) +wi+1(x)di+1(x)

Wi(x) + wi+1(x)
(3)

Wi+1(x) = Wi(x) + wi+1(x) (4)

where Di(x) and Wi(x) are the cumulative signed distance and
weight functions after integrating the ith range image.

In the special case of one dimension, the zero-crossing of the cu-
mulative function is at a range, R given by:

R =
�wiri

�wi

(5)

i.e., a weighted combination of the acquired range values, which is
what one would expect for a least squares minimization.

In principle, the distance and weighting functions should extend
indefinitely in either direction. However, to prevent surfaces on op-
posite sides of the object from interfering with each other, we force
the weighting function to taper off behind the surface. There is a
trade-off involved in choosing where the weight function tapers off. It
should persist far enough behind the surface to ensure that all distance
ramps will contribute in the vicinity of the final zero crossing, but, it
should also be as narrow as possible to avoid influencing surfaces on
the other side. To meet these requirements, we force the weights to
fall off at a distance equal to half the maximum uncertainty interval
of the range measurements. Similarly, the signed distance and weight
functions need not extend far in front of the surface. Restricting the
functions to the vicinity of the surface yields a more compact rep-
resentation and reduces the computational expense of updating the
volume.

In two and three dimensions, the range measurements correspond
to curves or surfaces with weight functions, and the signed distance
ramps have directions that are consistent with the primary directions
of sensor uncertainty. The uncertainties that apply to range image
integration include errors in alignment between meshes as well as er-
rors inherent in the scanning technology. A number of algorithms for
aligning sets of range images have been explored and shown to yield
excellent results [11][30]. The remaining error lies in the scanner it-
self. For optical triangulation scanners, for example, this error has
been shown to be ellipsoidal about the range points, with the major
axis of the ellipse aligned with the lines of sight of the laser [13][24].

Figure 4 illustrates the two-dimensional case for a range curve
derived from a single scan containing a row of range samples. In

3

(b) (c)

(e) (f)

Isosurface

Sensor

n2
n1

Dmax

Dmin

(a)

(d)

Sensor

Figure 4. Combination of signed distance and weight functions in two
dimensions. (a) and (d) are the signed distance and weight functions, re-
spectively, generated for a range image viewed from the sensor line of
sight shown in (d). The signed distance functions are chosen to vary be-
tween Dmin and Dmax, as shown in (a). The weighting falls off with
increasing obliquity to the sensor and at the edges of the meshes as in-
dicated by the darker regions in (e). The normals, n1 and n2 shown in
(e), are oriented at a grazing angle and facing the sensor, respectively.
Note how the weighting is lower (darker) for the grazing normal. (b) and
(e) are the signed distance and weight functions for a range image of the
same object taken at a 60 degree rotation. (c) is the signed distance func-
tion D(x) corresponding to the per voxel weighted combination of (a)
and (b) constructed using equations 3 and 4. (f) is the sum of the weights
at each voxel, W (x). The dotted green curve in (c) is the isosurface that
represents our current estimate of the shape of the object.

practice, we use a fixed point representation for the signed distance
function, which bounds the values to lie between Dmin and Dmax

as shown in the figure. The values of Dmin and Dmax must be neg-
ative and positive, respectively, as they are on opposite sides of a
signed distance zero-crossing.

For three dimensions, we can summarize the whole algorithm as
follows. First, we set all voxel weights to zero, so that new data will
overwrite the initial grid values. Next, we tessellate each range im-
age by constructing triangles from nearest neighbors on the sampled
lattice. We avoid tessellating over step discontinuities (cliffs in the
range map) by discarding triangles with edge lengths that exceed a
threshold. We must also compute a weight at each vertex as described
above.

Once a range image has been converted to a triangle mesh with
a weight at each vertex, we can update the voxel grid. The signed
distance contribution is computed by casting a ray from the sensor
through each voxel near the range surface and then intersecting it with
the triangle mesh, as shown in figure 5. The weight is computed by
linearly interpolating the weights stored at the intersection triangle’s
vertices. Having determined the signed distance and weight we can
apply the update formulae described in equations 3 and 4.

At any point during the merging of the range images, we can ex-
tract the zero-crossing isosurface from the volumetric grid. We re-
strict this extraction procedure to skip samples with zero weight, gen-
erating triangles only in the regions of observed data. We will relax
this restriction in the next section.

4 Hole filling
The algorithm described in the previous section is designed to re-
construct the observed portions of the surface. Unseen portions of
the surface will appear as holes in the reconstruction. While this re-
sult is an accurate representation of the known surface, the holes are
esthetically unsatisfying and can present a stumbling block to follow-
on algorithms that expect continuous meshes. In [17], for example,

Volume

Sensor

Range surface

wawb

wc

w

d

VoxelViewing
ray

Figure 5. Sampling the range surface to update the volume. We com-
pute the weight, w, and signed distance, d, needed to update the voxel by
casting a ray from the sensor, through the voxel onto the range surface.
We obtain the weight, w, by linearly interpolating the weights (wa, wb,
and wc) stored at neighboring range vertices. Note that for a translating
sensor (like our Cyberware scanner), the sensor point is different for each
column of range points.

the authors describe a method for parameterizing patches that entails
generating evenly spaced grid lines by walking across the edges of a
mesh. Gaps in the mesh prevent the algorithm from creating a fair
parameterization. As another example, rapid prototyping technolo-
gies such as stereolithography typically require a “watertight” model
in order to construct a solid replica [7].

One option for filling holes is to operate on the reconstructed mesh.
If the regions of the mesh near each hole are very nearly planar, then
this approach works well. However, holes in the meshes can be (and
frequently are) highly non-planar and may even require connections
between unconnected components. Instead, we offer a hole filling
approach that operates on our volume, which contains more informa-
tion than the reconstructed mesh.

The key to our algorithm lies in classifying all points in the vol-
ume as being in one of three states: unseen, empty, or near the sur-
face. Holes in the surface are indicated by frontiers between unseen
regions and empty regions (see Figure 6). Surfaces placed at these
frontiers offer a plausible way to plug these holes (dotted in Figure 6).
Obtaining this classification and generating these hole fillers leads to
a straightforward extension of the algorithm described in the previous
section:

1. Initialize the voxel space to the “unseen” state.

2. Update the voxels near the surface as described in the previ-
ous section. As before, these voxels take on continuous signed
distance and weight values.

3. Follow the lines of sight back from the observed surface and
mark the corresponding voxels as “empty”. We refer to this
step as space carving.

4. Perform an isosurface extraction at the zero-crossing of the
signed distance function. Additionally, extract a surface be-
tween regions seen to be empty and regions that remain unseen.

In practice, we represent the unseen and empty states using the
function and weight fields stored on the voxel lattice. We represent
the unseen state with the function values D(x) = Dmax, W (x) =
0 and the empty state with the function values D(x) = Dmin,
W (x) = 0, as shown in Figure 6b. The key advantage of this repre-
sentation is that we can use the same isosurface extraction algorithm
we used in the previous section without the restriction on interpo-
lating voxels of zero weight. This extraction finds both the signed
distance and hole fill isosurfaces and connects them naturally where
they meet, i.e., at the corners in Figure 6a where the dotted red line
meets the dashed green line. Note that the triangles that arise from

4

Unseen

Empty Near surface

W(x) = 0 W(x) > 0

W(x) = 0

Sensor

Unseen

Empty

Observed
isosurface

Hole fill
isosurface

Near
surface

(a) (b)

D(x) = Dmin

D(x) = Dmax

min max
 D < D(x) < D

Figure 6. Volumetric grid with space carving and hole filling. (a) The
regions in front of the surface are seen as empty, regions in the vicinity of
the surface ramp through the zero-crossing, while regions behind remain
unseen. The green (dashed) segments are the isosurfaces generated near
the observed surface, while the red (dotted) segments are hole fillers, gen-
erated by tessellating over the transition from empty to unseen. In (b), we
identify the three extremal voxel states with their corresponding function
values.

interpolations across voxels of zero weight are distinct from the oth-
ers: they are hole fillers. We take advantage of this distinction when
smoothing surfaces as described below.

Figure 6 illustrates the method for a single range image, and pro-
vides a diagram for the three-state classification scheme. The hole
filler isosurfaces are “false” in that they are not representative of the
observed surface, but they do derive from observed data. In partic-
ular, they correspond to a boundary that confines where the surface
could plausibly exist. In practice, we find that many of these hole
filler surfaces are generated in crevices that are hard for the sensor to
reach.

Because the transition between unseen and empty is discontinuous
and hole fill triangles are generated as an isosurface between these bi-
nary states, with no smooth transition, we generally observe aliasing
artifacts in these areas. These artifacts can be eliminated by prefilter-
ing the transition region before sampling on the voxel lattice using
straightforward methods such as analytic filtering or super-sampling
and averaging down. In practice, we have obtained satisfactory re-
sults by applying another technique: post-filtering the mesh after re-
construction using weighted averages of nearest vertex neighbors as
described in [29]. The effect of this filtering step is to blur the hole
fill surface. Since we know which triangles correspond to hole fillers,
we need only concentrate the surface filtering on the these portions
of the mesh. This localized filtering preserves the detail in the ob-
served surface reconstruction. To achieve a smooth blend between
filtered hole fill vertices and the neighboring “real” surface, we allow
the filter weights to extend beyond and taper off into the vicinity of
the hole fill boundaries.

We have just seen how “space carving” is a useful operation: it
tells us much about the structure of free space, allowing us to fill
holes in an intelligent way. However, our algorithm only carves back
from observed surfaces. There are numerous situations where more
carving would be useful. For example, the interior walls of a hollow
cylinder may elude digitization, but by seeing through the hollow
portion of the cylinder to a surface placed behind it, we can better
approximate its geometry. We can extend the carving paradigm to
cover these situations by placing such a backdrop behind the surfaces
being scanned. By placing the backdrop outside of the voxel grid, we
utilize it purely for carving space without introducing its geometry
into the model.

5 Implementation
5.1 Hardware
The examples in this paper were acquired using a Cyberware 3030
MS laser stripe optical triangulation scanner. Figure 1b illustrates
the scanning geometry: an object translates through a plane of laser
light while the reflections are triangulated into depth profiles through
a CCD camera positioned off axis. To improve the quality of the data,
we apply the method of spacetime analysis as described in [6]. The
benefits of this analysis include reduced range noise, greater immu-
nity to reflectance changes, and less artifacts near range discontinu-
ities.

When using traditional triangulation analysis implemented in
hardware in our Cyberware scanner, the uncertainty in triangulation
for our system follows the lines of sight of the expanding laser beam.
When using the spacetime analysis, however, the uncertainty follows
the lines of sight of the camera. The results described in section 6 of
this paper were obtained with one or the other triangulation method.
In each case, we adhere to the appropriate lines of sight when laying
down signed distance and weight functions.

5.2 Software
The creation of detailed, complex models requires a large amount of
input data to be merged into high resolution voxel grids. The ex-
amples in the next section include models generated from as many
as 70 scans containing up to 12 million input vertices with volumet-
ric grids ranging in size up to 160 million voxels. Clearly, time and
space optimizations are critical for merging this data and managing
these grids.

5.2.1 Run-length encoding
The core data structure is a run-length encoded (RLE) volume with
three run types: empty, unseen, and varying. The varying fields are
stored as a stream of varying data, rather than runs of constant value.
Typical memory savings vary from 10:1 to 20:1. In fact, the space
required to represent one of these voxel grids is usually less than the
memory required to represent the final mesh as a list of vertices and
triangle indices.

5.2.2 Fast volume traversal
Updating the volume from a range image may be likened to inverse
volume rendering: instead of reading from a volume and writing to
an image, we read from a range image and write to a volume. As a re-
sult, we leverage off of a successful idea from the volume rendering
community: for best memory system performance, stream through
the volume and the image simultaneously in scanline order [18]. In
general, however, the scanlines of a range image are not aligned with
the scanlines of the voxel grid, as shown in Figure 7a. By suitably
resampling the range image, we obtain the desired alignment (Fig-
ure 7b). The resampling process consists of a depth rendering of the
range surface using the viewing transformation specific to the lines of
sight of the range sensor and using an image plane oriented to align
with the voxel grid. We assign the weights as vertex “colors” to be
linearly interpolated during the rendering step, an approach equiva-
lent to Gouraud shading of triangle colors.

To merge the range data into the voxel grid, we stream through the
voxel scanlines in order while stepping through the corresponding
scanlines in the resampled range image. We map each voxel scanline
to the correct portion of the range scanline as depicted in Figure 7d,
and we resample the range data to yield a distance from the range
surface. Using the combination rules given by equations 3 and 4,
we update the run-length encoded structure. To preserve the linear
memory structure of the RLE volume (and thus avoid using linked
lists of runs scattered through the memory space), we read the voxel
scanlines from the current volume and write the updated scanlines to
a second RLE volume; i.e., we double-buffer the voxel grid. Note
that depending on the scanner geometry, the mapping from voxels

5

(c)

Voxel
slices

Range
image Sensor

(a) (d)

Voxel
slices

Range
image

Sensor

Volume

Range image

Resampled
range image

(b)

Volume

Figure 7. Range image resampling and scanline order voxel updates. (a) Range image scanlines are not in general oriented to allow for coherently streaming
through voxel and range scanlines. (b) By resampling the range image, we can obtain the desired range scanline orientation. (c) Casting rays from the pixels
on the range image means cutting across scanlines of the voxel grid, resulting in poor memory performance. (d) Instead, we run along scanlines of voxels,
mapping them to the correct positions on the resampled range image.

to range image pixels may not be linear, in which case care must be
taken to resample appropriately [5].

For the case of merging range data only in the vicinity of the
surface, we try to avoid processing voxels distant from the surface.
To that end, we construct a binary tree of minimum and maximum
depths for every adjacent pair of resampled range image scanlines.
Before processing each voxel scanline, we query the binary tree to
decide which voxels, if any, are near the range surface. In this way,
only relevant pieces of the scanline are processed. In a similar fash-
ion, the space carving steps can be designed to avoid processing vox-
els that are not seen to be empty for a given range image. The result-
ing speed-ups from the binary tree are typically a factor of 15 without
carving, and a factor of 5 with carving. We did not implement a brute-
force volume update method, however we would expect the overall
algorithm described here would be much faster by comparison.

5.2.3 Fast surface extraction
To generate our final surfaces, we employ a Marching Cubes algo-
rithm [20] with a lookup table that resolves ambiguous cases [22]. To
reduce computational costs, we only process voxels that have varying
data or are at the boundary between empty and unseen.

6 Results
We show results for a number of objects designed to explore the ro-
bustness of our algorithm, its ability to fill gaps in the reconstruction,
and its attainable level of detail. To explore robustness, we scanned
a thin drill bit using the traditional method of optical triangulation.
Due to the false edge extensions inherent in data from triangulation
scanners [6], this particular object poses a formidable challenge, yet
the volumetric method behaves robustly where the zippering method
[30] fails catastrophically. The dragon sequence in Figure 11 demon-
strates the effectiveness of carving space for hole filling. The use
of a backdrop here is particularly effective in filling the gaps in the
model. Note that we do not use the backdrop at all times, in part
because the range images are much denser and more expensive to
process, and also because the backdrop tends to obstruct the path of
the object when automatically repositioning it with our motion con-
trol platform. Finally, the “Happy Buddha” sequence in Figure 12
shows that our method can be used to generate very detailed, hole-
free models suitable for rendering and rapid manufacturing.

Statistics for the reconstruction of the dragon and Buddha models
appear in Figure 8. With the optimizations described in the previous
section, we were able to reconstruct the observed portions of the sur-
faces in under an hour on a 250 MHz MIPS R4400 processor. The
space carving and hole filling algorithm is not completely optimized,
but the execution times are still in the range of 3-5 hours, less than
the time spent acquiring and registering the range images. For both
models, the RMS distance between points in the original range im-
ages and points on the reconstructed surfaces is approximately 0.1
mm. This figure is roughly the same as the accuracy of the scanning

technology, indicating a nearly optimal surface reconstruction.

7 Discussion and future work
We have described a new algorithm for volumetric integration of
range images, leading to a surface reconstruction without holes. The
algorithm has a number of desirable properties, including the repre-
sentation of directional sensor uncertainty, incremental and order in-
dependent updating, robustness in the presence of sensor errors, and
the ability to fill gaps in the reconstruction by carving space. Our use
of a run-length encoded representation of the voxel grid and synchro-
nized processing of voxel and resampled range image scanlines make
the algorithm efficient. This in turn allows us to acquire and integrate
a large number of range images. In particular, we demonstrate the
ability to integrate up to 70 scans into a high resolution voxel grid to
generate million polygon models in a few hours. These models are
free of holes, making them suitable for surface fitting, rapid proto-
typing, and rendering.

There are a number of limitations that prevent us from generating
models from an arbitrary object. Some of these limitations arise from
the algorithm while others arise from the limitations of the scanning
technology. Among the algorithmic limitations, our method has dif-
ficulty bridging sharp corners if no scan spans both surfaces meeting
at the corner. This is less of a problem when applying our hole-filling
algorithm, but we are also exploring methods that will work with-
out hole filling. Thin surfaces are also problematic. As described
in section 3, the influences of observed surfaces extend behind their
estimated positions for each range image and can interfere with dis-
tance functions originating from scans of the opposite side of a thin
surface. In this respect, the apexes of sharp corners also behave like
thin surfaces. While we have limited this influence as much as pos-
sible, it still places a lower limit on the thickness of surface that we
can reliably reconstruct without causing artifacts such as thickening
of surfaces or rounding of sharp corners. We are currently working to
lift this restriction by considering the estimated normals of surfaces.

Other limitations arise from the scanning technologies themselves.
Optical methods such as the one we use in this paper can only provide
data for external surfaces; internal cavities are not seen. Further, very
complicated objects may require an enormous amount of scanning to
cover the surface. Optical triangulation scanning has the additional
problem that both the laser and the sensor must observe each point on
the surface, further restricting the class of objects that can be scanned
completely. The reflectance properties of objects are also a factor.
Optical methods generally operate by casting light onto an object, but
shiny surfaces can deflect this illumination, dark objects can absorb
it, and bright surfaces can lead to interreflections. To minimize these
effects, we often paint our objects with a flat, gray paint.

Straightforward extensions to our algorithm include improving the
execution time of the space carving portion of the algorithm and
demonstrating parallelization of the whole algorithm. In addition,

6

Buddha 5 M48

58 9 MBuddha + fill

47 2.4 M 670

02.6 M197

Dragon

Dragon + fill

61

71

15 M

24 M

56

257

1.7 M

1.8 M

324

0

Model Scans Input
triangles

Exec.
time
(min)

Output
triangles Holes

0.35

0.25

712x501x322

407x957x407

0.35 712x501x322

0.25 407x957x407

Voxel
size

(mm)

Volume
dimensions

Figure 8. Statistics for the reconstruction of the dragon and Buddha mod-
els, with and without space carving.

more aggressive space carving may be possible by making inferences
about sensor lines of sight that return no range data. In the future, we
hope to apply our methods to other scanning technologies and to large
scale objects such as terrain and architectural scenes.

Acknowledgments
We would like to thank Phil Lacroute for his many helpful sugges-
tions in designing the volumetric algorithms. Afra Zomorodian wrote
the scripting interface for scanning automation. Homan Igehy wrote
the fast scan conversion code, which we used for range image resam-
pling. Thanks to Bill Lorensen for his marching cubes tables and
mesh decimation software, and for getting the 3D hardcopy made.
Matt Pharr did the accessibility shading used to render the color Bud-
dha, and Pat Hanrahan and Julie Dorsey made helpful suggestions for
RenderMan tricks and lighting models. Thanks also to David Addle-
man and George Dabrowski of Cyberware for their help and for the
use of their scanner. This work was supported by the National Sci-
ence Foundation under contract CCR-9157767 and Interval Research
Corporation.

References
[1] C.L. Bajaj, F. Bernardini, and G. Xu. Automatic reconstruction of surfaces and

scalar fields from 3D scans. In Proceedings of SIGGRAPH ’95 (Los Angeles, CA,
Aug. 6-11, 1995), pages 109–118. ACM Press, August 1995.

[2] J.-D. Boissonnat. Geometric structures for three-dimensional shape representation.
ACM Transactions on Graphics, 3(4):266–286, October 1984.

[3] C.H. Chien, Y.B. Sim, and J.K. Aggarwal. Generation of volume/surface octree
from range data. In The Computer Society Conference on Computer Vision and
Pattern Recognition, pages 254–60, June 1988.

[4] C. I. Connolly. Cumulative generation of octree models from range data. In Pro-
ceedings, Intl. Conf. Robotics, pages 25–32, March 1984.

[5] B. Curless. Better optical triangulation and volumetric reconstruction of complex
models from range images. PhD thesis, Stanford University, 1996.

[6] B. Curless and M. Levoy. Better optical triangulation through spacetime analysis.
In Proceedings of IEEE International Conference on Computer Vision, pages 987–
994, June 1995.

[7] A. Dolenc. Software tools for rapid prototyping technologies in manufactur-
ing. Acta Polytechnica Scandinavica: Mathematics and Computer Science Series,
Ma62:1–111, 1993.

[8] D. Eberly, R. Gardner, B. Morse, S. Pizer, and C. Scharlach. Ridges for image
analysis. Journal of Mathematical Imaging and Vision, 4(4):353–373, Dec 1994.

[9] H. Edelsbrunner and E.P. Mücke. Three-dimensional alpha shapes. In Workshop
on Volume Visualization, pages 75–105, October 1992.

[10] A. Elfes and L. Matthies. Sensor integration for robot navigation: combining sonar
and range data in a grid-based representation. In Proceedings of the 26th IEEE
Conference on Decision and Control, pages 1802–1807, December 1987.

[11] H. Gagnon, M. Soucy, R. Bergevin, and D. Laurendeau. Registration of multi-
ple range views for automatic 3-D model building. In Proceedings 1994 IEEE
Computer Society Conference on Computer Vision and Pattern Recognition, pages
581–586, June 1994.

[12] E. Grosso, G. Sandini, and C. Frigato. Extraction of 3D information and volumet-
ric uncertainty from multiple stereo images. In Proceedings of the 8th European
Conference on Artificial Intelligence, pages 683–688, August 1988.

[13] P. Hebert, D. Laurendeau, and D. Poussart. Scene reconstruction and description:
geometric primitive extraction from multiple viewed scattered data. In Proceedings

(a) (b)

(e) (f)

(g)

(c) (d)

Figure 9. Merging range images of a drill bit. We scanned a 1.6 mm drill
bit from 12 orientations at a 30 degree spacing using traditional optical
triangulation methods. Illustrations (a) - (d) each show a plan (top) view of
a slice taken through the range data and two reconstructions. (a) The range
data shown as unorganized points: algorithms that operate on this form of
data would likely have difficulty deriving the correct surface. (b) The
range data shown as a set of wire frame tessellations of the range data:
the false edge extensions pose a challenge to both polygon and volumetric
methods. (c) A slice through the reconstructed surface generated by a
polygon method: the zippering algorithm of Turk [31]. (d) A slice through
the reconstructed surface generated by the volumetric method described
in this paper. (e) A rendering of the zippered surface. (f) A rendering
of the volumetrically generated surface. Note the catastrophic failure of
the zippering algorithm. The volumetric method, however, produces a
watertight model. (g) A photograph of the original drill bit. The drill bit
was painted white for scanning.

7

of IEEE Conference on Computer Vision and Pattern Recognition, pages 286–292,
June 1993.

[14] A. Hilton, A.J. Toddart, J. Illingworth, and T. Windeatt. Reliable surface recon-
struction from multiple range images. In Fourth European Conference on Com-
puter Vision, volume I, pages 117–126, April 1996.

[15] Tsai-Hong Hong and M. O. Shneier. Describing a robot’s workspace using a se-
quence of views from a moving camera. IEEE Transactions on Pattern Analysis
and Machine Intelligence, 7(6):721–726, November 1985.

[16] H. Hoppe, T. DeRose, T. Duchamp, J. McDonald, and W. Stuetzle. Surface re-
construction from unorganized points. In Computer Graphics (SIGGRAPH ’92
Proceedings), volume 26, pages 71–78, July 1992.

[17] V. Krishnamurthy and M. Levoy. Fitting smooth surfaces to dense polygon meshes.
In these proceedings.

[18] P. Lacroute and M. Levoy. Fast volume rendering using a shear-warp factorization
of the viewing transformation. In Proceedings of SIGGRAPH ’94 (Orlando, FL,
July 24-29, 1994), pages 451–458. ACM Press, July 1994.

[19] A. Li and G. Crebbin. Octree encoding of objects from range images. Pattern
Recognition, 27(5):727–739, May 1994.

[20] W.E. Lorensen and H. E. Cline. Marching cubes: A high resolution 3D surface
construction algorithm. In Computer Graphics (SIGGRAPH ’87 Proceedings),
volume 21, pages 163–169, July 1987.

[21] W.N. Martin and J.K. Aggarwal. Volumetric descriptions of objects from mul-
tiple views. IEEE Transactions on Pattern Analysis and Machine Intelligence,
5(2):150–158, March 1983.

[22] C. Montani, R. Scateni, and R. Scopigno. A modified look-up table for implicit
disambiguation of marching cubes. Visual Computer, 10(6):353–355, 1994.

[23] M. Potmesil. Generating octree models of 3D objects from their silhouettes in a
sequence of images. Computer Vision, Graphics, and Image Processing, 40(1):1–
29, October 1987.

[24] M. Rutishauser, M. Stricker, and M. Trobina. Merging range images of arbitrar-
ily shaped objects. In Proceedings 1994 IEEE Computer Society Conference on
Computer Vision and Pattern Recognition, pages 573–580, June 1994.

[25] M. Soucy and D. Laurendeau. A general surface approach to the integration of a set
of range views. IEEE Transactions on Pattern Analysis and Machine Intelligence,
17(4):344–358, April 1995.

[26] G. Succi, G. Sandini, E Grosso, and M. Tistarelli. 3D feature extraction from
sequences of range data. In Robotics Research. Fifth International Symposium,
pages 117–127, August 1990.

[27] R. Szeliski. Rapid octree construction from image sequences. CVGIP: Image
Understanding, 58(1):23–32, July 1993.

[28] G.H Tarbox and S.N. Gottschlich. IVIS: An integrated volumetric inspection sys-
tem. In Proceedings of the 1994 Second CAD-Based Vision Workshop, pages 220–
227, February 1994.

[29] G. Taubin. A signal processing approach to fair surface design. In Proceedings of
SIGGRAPH ’95 (Los Angeles, CA, Aug. 6-11, 1995), pages 351–358. ACM Press,
August 1995.

[30] G. Turk and M. Levoy. Zippered polygon meshes from range images. In Proceed-
ings of SIGGRAPH ’94 (Orlando, FL, July 24-29, 1994), pages 311–318. ACM
Press, July 1994.

[31] Robert Weinstock. The Calculus of Variations, with Applications to Physics and
Engineering. Dover Publications, 1974.

A Isosurface as least squares minimizer
It is possible to show that the isosurface of the weighted signed
distance function is equivalent to a least squares minimization of
squared distances between points on the range surfaces and points
on the desired reconstruction. The key assumptions are that the range
sensor is orthographic and that the range errors are independently dis-
tributed along sensor lines of sight. A full proof is beyond the scope
of this paper, but we provide a sketch here. See [5] for details.

Consider a region, R, on the desired surface, f , which is observed
by n range images. We define the error between an observed range
surface and a possible reconstructed surface as the integral of the
weighted squared distances between points on the range surface and
the reconstructed surface. These distances are taken along the lines of
sight of the sensor, commensurate with the predominant directions of
uncertainty (see Figure 10). The total error is the sum of the integrals
for the n range images:

z = f(x; y)

d1

d2

w2

w1

f2

f1

(x; y; z)

v2

v1

x

y

z

Figure 10. Two range surfaces, f1 and f2, are tessellated range images
acquired from directions v1 and v2 . The possible range surface, z =
f(x; y), is evaluated in terms of the weighted squared distances to points
on the range surfaces taken along the lines of sight to the sensor. A point,
(x; y; z), is shown here being evaluated to find its corresponding signed
distances, d1 and d2 , and weights, w1 and w2.

E(f) =

nX
i=1

ZZ
Ai

wi(s; t; f)di(s; t; f)
2
dsdt (6)

where each (s; t) corresponds to a particular sensor line of sight for
each range image, Ai is the domain of integration for the i’th range
image, and wi(s; t; f) and di(s; t; f) are the weights and signed dis-
tances taken along the i’th range image’s lines of sight.

Now, consider a canonical domain, A, on a parameter plane,
(x; y), over which R is a function z = f(x; y). The total error can
be re-written as an integration over the canonical domain:

E(z) =

ZZ
A

nX
i=1

�
wi(x; y; z)di(x; y; z)

2
� �
vi � (

@z

@x
;
@z

@y
;�1)

�
dxdy

(7)
where vi is the sensing direction of the i’th range image, and the
weights and distances are evaluated at each point, (x; y; z), by first
mapping them to the lines of sight of the corresponding range image.
The dot product represents a correction term that relates differential
areas in A to differential areas in Ai. Applying the calculus of vari-
ations [31], we can construct a partial differential equation for the z
that minimizes this integral. Solving this equation we arrive at the
following relation:

nX
i=1

@vi
[wi(x; y; z)di(x; y; z)

2] = 0 (8)

where @vi
is the directional derivative along vi. Since the weight

associated with a line of sight does not vary along that line of sight,
and the signed distance has a derivative of unity along the line of
sight, we can simplify this equation to:

nX
i=1

wi(x; y; z)di(x; y; z) = 0 (9)

This weighted sum of signed distances is the same as what we
compute in equations 1 and 2, without the division by the sum of the
weights. Since the this divisor is always positive, the isosurface we
extract in section 3 is exactly the least squares minimizing surface
described here.

8

(a) (b)

(c) (d)

(f) (g) (h)

(i) (j) (k)

(e)

Figure 11. Reconstruction of a dragon. Illustrations (a) - (d) are full views of the dragon. Illustrations (e) - (h) are magnified views of the section highlighted
by the green box in (a). Regions shown in red correspond to hole fill triangles. Illustrations (i) - (k) are slices through the corresponding volumetric grids at
the level indicated by the green line in (e). (a)(e)(i) Reconstruction from 61 range images without space carving and hole filling. The magnified rendering
highlights the holes in the belly. The slice through the volumetric grid shows how the signed distance ramps are maintained close to the surface. The gap in
the ramps leads to a hole in the reconstruction. (b)(f)(j) Reconstruction with space carving and hole filling using the same data as in (a). While some holes are
filled in a reasonable manner, some large regions of space are left untouched and create extraneous tessellations. The slice through the volumetric grid reveals
that the isosurface between the unseen (brown) and empty (black) regions will be connected to the isosurface extracted from the distance ramps, making it part
of the connected component of the dragon body and leaving us with a substantial number of false surfaces. (c)(g)(k) Reconstruction with 10 additional range
images using “backdrop” surfaces to effect more carving. Notice how the extraneous hole fill triangles nearly vanish. The volumetric slice shows how we have
managed to empty out the space near the belly. The bumpiness along the hole fill regions of the belly in (g) corresponds to aliasing artifacts from tessellating
over the discontinuous transition between unseen and empty regions. (d)(h) Reconstruction as in (c)(g) with filtering of the hole fill portions of the mesh. The
filtering operation blurs out the aliasing artifacts in the hole fill regions while preserving the detail in the rest of the model. Careful examination of (h) reveals a
faint ridge in the vicinity of the smoothed hole fill. This ridge is actual geometry present in all of the renderings, (e)-(h). The final model contains 1.8 million
polygons and is watertight.

9

(a
)

(b
)

(c
)

(d
)

(e
)

F
ig

ur
e

12
.

R
ec

on
st

ru
ct

io
n

an
d

3D
ha

rd
co

py
of

th
e

“H
ap

py
B

ud
dh

a”
.

T
he

or
ig

in
al

is
a

pl
as

tic
an

d
ro

se
w

oo
d

st
at

ue
tte

th
at

st
an

ds
20

cm
ta

ll.
N

ot
e

th
at

th
e

ca
m

er
a

pa
ra

m
et

er
s

fo
r

ea
ch

of
th

es
e

im
ag

es
is

di
ff

er
en

t,
cr

ea
tin

g
a

sl
ig

ht
ly

di
ff

er
en

t
pe

rs
pe

ct
iv

e
in

ea
ch

ca
se

.
(a

)
Ph

ot
og

ra
ph

of
th

e
or

ig
in

al
af

te
r

sp
ra

y
pa

in
tin

g
it

m
at

te
gr

ay
to

si
m

pl
if

y
sc

an
ni

ng
.

(b
)

G
ou

ra
ud

-s
ha

de
d

re
nd

er
in

g
of

on
e

ra
ng

e
im

ag
e

of
th

e
st

at
ue

tte
.

Sc
an

s
w

er
e

ac
qu

ir
ed

us
in

g
a

C
yb

er
w

ar
e

sc
an

ne
r,

m
od

ifi
ed

to
pe

rm
it

sp
ac

et
im

e
tr

ia
ng

ul
at

io
n

[6
].

T
hi

s
fig

ur
e

ill
us

tr
at

es
th

e
lim

ite
d

an
d

fr
ag

m
en

ta
ry

na
tu

re
of

th
e

in
fo

rm
at

io
n

av
ai

la
bl

e
fr

om
a

si
ng

le
ra

ng
e

im
ag

e.
(c

)
G

ou
ra

ud
-s

ha
de

d
re

nd
er

in
g

of
th

e
2.

4
m

ill
io

n
po

ly
go

n
m

es
h

af
te

r
m

er
gi

ng
48

sc
an

s,
bu

t
be

fo
re

ho
le

-fi
lli

ng
.

N
ot

ic
e

th
at

th
e

re
co

ns
tr

uc
te

d
m

es
h

ha
s

at
le

as
t

as
m

uc
h

de
ta

il
as

th
e

si
ng

le
ra

ng
e

im
ag

e,
bu

t
is

le
ss

no
is

y;
th

is
is

m
os

ta
pp

ar
en

t
ar

ou
nd

th
e

be
lly

.
T

he
ho

le
in

th
e

ba
se

of
th

e
m

od
el

co
rr

es
po

nd
s

to
re

gi
on

s
th

at
w

er
e

no
t

ob
se

rv
ed

di
re

ct
ly

by
th

e
ra

ng
e

se
ns

or
.

(d
)

R
en

de
rM

an
re

nd
er

in
g

of
an

80
0,

00
0

po
ly

go
n

de
ci

m
at

ed
ve

rs
io

n
of

th
e

ho
le

-fi
lle

d
an

d
fil

te
re

d
m

es
h

bu
ilt

fr
om

58
sc

an
s.

B
y

pl
ac

in
g

a
ba

ck
dr

op
be

hi
nd

th
e

m
od

el
an

d
ta

ki
ng

10
ad

di
tio

na
l

sc
an

s,
w

e
w

er
e

ab
le

to
se

e
th

ro
ug

h
th

e
sp

ac
e

be
tw

ee
n

th
e

ba
se

an
d

th
e

B
ud

dh
a’

s
ga

rm
en

ts
,a

llo
w

in
g

us
to

ca
rv

e
sp

ac
e

an
d

fil
lt

he
ho

le
s

in
th

e
ba

se
.

(e
)

Ph
ot

og
ra

ph
of

a
ha

rd
co

py
of

th
e

3D
m

od
el

,m
an

uf
ac

tu
re

d
by

3D
Sy

st
em

s,
In

c.
,

us
in

g
st

er
eo

lit
ho

gr
ap

hy
.

T
he

co
m

pu
te

r
m

od
el

w
as

sl
ic

ed
in

to
50

0
la

ye
rs

,1
50

m
ic

ro
ns

ap
ar

t,
an

d
th

e
ha

rd
co

py
w

as
bu

ilt
up

la
ye

r
by

la
ye

r
by

se
le

ct
iv

el
y

ha
rd

en
in

g
a

liq
ui

d
re

si
n.

T
he

pr
oc

es
s

to
ok

ab
ou

t
10

ho
ur

s.
A

ft
er

w
ar

ds
,t

he
m

od
el

w
as

sa
nd

ed
an

d
be

ad
-b

la
st

ed
to

re
m

ov
e

th
e

st
ai

r-
st

ep
ar

tif
ac

ts
th

at
ar

is
e

du
ri

ng
la

ye
re

d
m

an
uf

ac
tu

ri
ng

.

10

Acquisition and Visualization of
Surface Light Fields

SIGGRAPH 2001 Course 46 Notes

Session 2:

3D Scanning Using the Image-Based Visual Hull

Leonard McMillan
Massachusetts Institute of Technology

Image-Based Visual Hulls:
Shape and Texture in a
Single Low-Cost Package

Image-Based Visual Hulls:
Shape and Texture in a
Single Low-Cost Package

Leonard McMillanLeonard McMillan
LCS Computer Graphics GroupLCS Computer Graphics Group

Massachusetts Institute of TechnologyMassachusetts Institute of Technology

What is a Visual Hull?What is a Visual Hull?

Why use a Visual Hull?Why use a Visual Hull?

They rely on the simplest CV algorithmsThey rely on the simplest CV algorithms

They can be computed robustlyThey can be computed robustly

They can be computed efficientlyThey can be computed efficiently

- =

background background
+ +

foregroundforeground

backgroundbackground foreground foreground

Rendering Visual HullsRendering Visual Hulls

Reference 1 Reference 2
Desired

Build then SampleBuild then Sample

Reference 1 Reference 2
Desired

Build then SampleBuild then Sample

Reference 1 Reference 2
Desired

Sample DirectlySample Directly

Reference 1 Reference 2
Desired

Sample DirectlySample Directly

Reference 1 Reference 2
Desired

Direct Sampling AdvantageDirect Sampling Advantage

•Line interval intersections are robust

•Direct sampling gives exact rendering

•Can be computed efficiently in
image space

Reference 1

Reference 2
Desired

Image-Based ComputationImage-Based Computation

ObservationObservation

Incremental computation along scanlinesIncremental computation along scanlines

Desired

Reference

Step 1: BinningStep 1: Binning
Sort silhouette edges into binsSort silhouette edges into bins

Epipole

Bin 5

Bin 1

Bin 2

Bin 3

Bin 4

Epipole

Bin 5

Step 2: ScanningStep 2: Scanning

IBVH AdvantagesIBVH Advantages

• Approximately constant computation
per pixel per camera

• Parallelizes

• Consistent with
input silhouettes

Video of IBVHVideo of IBVH

Shading AlgorithmShading Algorithm
Use view dependent texture mappingUse view dependent texture mapping

at eachat each
IBVHIBVH
samplesample

Problem:Problem:
VISIBILITYVISIBILITY

IBVH Visibility AlgorithmIBVH Visibility Algorithm

Determining Visibility in 2DDetermining Visibility in 2D

Desired viewReference view

Coverage MaskCoverage MaskCoverage MaskCoverage Mask

VisibleVisibleVisibleVisibleNotNotNotNot

Determining Visibility in 2DDetermining Visibility in 2D

Desired viewReference view

Coverage MaskCoverage MaskCoverage MaskCoverage Mask

VisibleVisibleVisibleVisible

Shaded Visual HullsShaded Visual Hulls

More IBVH ResultsMore IBVH Results

An IBVH-Based 3D ScannerAn IBVH-Based 3D Scanner

Simultaneous capture Simultaneous capture
of IBVH shape and of IBVH shape and
reflected radiancereflected radiance

LowLow--costcost

Fast acquisitionFast acquisition

Rotating Platform

Cameras

Overhead Lights

Ba
ck

 L
igh

t

Active Back LightingActive Back Lighting

Provides improved segmentationProvides improved segmentation

Actual SystemActual System

IBVH ScansIBVH Scans
ImageImage--based visual hulls built from 108 (3 x 36) imagesbased visual hulls built from 108 (3 x 36) images

Dealing with ConcavitiesDealing with Concavities

Concave surface regions never appear on a silhouette.Concave surface regions never appear on a silhouette.
Thus, an IBVH can not capture such shapes…Thus, an IBVH can not capture such shapes…

View Dependent ShadingView Dependent Shading
However, the captured images can be used as a surface light However, the captured images can be used as a surface light

field defined over the visual hull. Thus, providing accurate field defined over the visual hull. Thus, providing accurate
renderings despite the geometric inaccuracies.renderings despite the geometric inaccuracies.

IBVH Object ModelsIBVH Object Models

We have captured 100’sWe have captured 100’s
of models with ourof models with our
IBVHIBVH--based 3Dbased 3D
scanning system.scanning system.
Including, highlyIncluding, highly
specularspecular, fuzzy, and, fuzzy, and
translucent objects.translucent objects.

How many Images?How many Images?
The shape estimate of the visual hull converges rapidly. The shape estimate of the visual hull converges rapidly.

Subsequent silhouettes provide only minor improvements.Subsequent silhouettes provide only minor improvements.
Volume of Gargoyle Model

0
200000
400000
600000
800000

1000000
1200000
1400000

1 9 17 25 33 41 49 57 65 73 81 89 97 10
5

Camera

Vo
lu

m
e

Series1
Series2
Series3
Series4
Series5

How many Images?How many Images?

Adding more images dramatically improves the rendering Adding more images dramatically improves the rendering
quality of highly quality of highly specularspecular and transparent surfaces, as and transparent surfaces, as
well as improving the rendering of concavities.well as improving the rendering of concavities.

Future IBVH WorkFuture IBVH Work

•Improved 3D scanners

•3D teleconferencing

•3D Object tracking and recognition

•Virtual sets

•Post-production camera effects

•Mixed reality

ConclusionsConclusions

Visual hulls can be computed efficiently and robustly in image Visual hulls can be computed efficiently and robustly in image
space. space.

Sparsely sampled visual hulls used in combination with viewSparsely sampled visual hulls used in combination with view--
dependent texture maps provide compelling realdependent texture maps provide compelling real--time time
visualizationsvisualizations

Densely sampled visual hulls combined with surface light Densely sampled visual hulls combined with surface light
fields provide effective 3D object modelsfields provide effective 3D object models

Image-Based Visual Hulls
Wojciech Matusik*

Laboratory for Computer Science
Massachusetts Institute of Technology

Chris Buehler*
Laboratory for Computer Science

Massachusetts Institute of Technology

Ramesh Raskar‡
Department of Computer Science

University of North Carolina - Chapel Hill

Steven J. Gortler†
Division of Engineering and Applied Sciences

Harvard University

Leonard McMillan*
Laboratory for Computer Science

Massachusetts Institute of Technology

Abstract
In this paper, we describe an efficient image-based approach to
computing and shading visual hulls from silhouette image data.
Our algorithm takes advantage of epipolar geometry and incre-
mental computation to achieve a constant rendering cost per
rendered pixel. It does not suffer from the computation complex-
ity, limited resolution, or quantization artifacts of previous
volumetric approaches. We demonstrate the use of this algorithm
in a real-time virtualized reality application running off a small
number of video streams.
Keywords: Computer Vision, Image-Based Rendering, Construc-
tive Solid Geometry, Misc. Rendering Algorithms.

1 Introduction
Visualizing and navigating within virtual environments composed
of both real and synthetic objects has been a long-standing goal of
computer graphics. The term “Virtualized Reality™”, as popular-
ized by Kanade [23], describes a setting where a real-world scene
is “captured” by a collection of cameras and then viewed through
a virtual camera, as if the scene was a synthetic computer graphics
environment. In practice, this goal has been difficult to achieve.
Previous attempts have employed a wide range of computer vision
algorithms to extract an explicit geometric model of the desired
scene.

Unfortunately, many computer vision algorithms (e.g. stereo
vision, optical flow, and shape from shading) are too slow for
real-time use. Consequently, most virtualized reality systems em-
ploy off-line post-processing of acquired video sequences.
Furthermore, many computer vision algorithms make unrealistic
simplifying assumptions (e.g. all surfaces are diffuse) or impose
impractical restrictions (e.g. objects must have sufficient non-
periodic textures) for robust operation. We present a new algo-
rithm for synthesizing virtual renderings of real-world scenes in
real time. Not only is our technique fast, it also makes few simpli-
fying assumptions and has few restrictions.
*(wojciech | cbuehler | mcmillan)@graphics.lcs.mit.edu
†sjg@cs.harvard.edu
‡raskar@cs.unc.edu

Figure 1 - The intersection of silhouette cones defines an approxi-
mate geometric representation of an object called the visual hull. A
visual hull has several desirable properties: it contains the actual
object, and it has consistent silhouettes.

Our algorithm is based on an approximate geometric repre-
sentation of the depicted scene known as the visual hull (see
Figure 1). A visual hull is constructed by using the visible silhou-
ette information from a series of reference images to determine a
conservative shell that progressively encloses the actual object.
Based on the principle of calculatus eliminatus [28], the visual
hull in some sense carves away regions of space where the object
“is not”.

The visual hull representation can be constructed by a series
of 3D constructive solid geometry (CSG) intersections. Previous
robust implementations of this algorithm have used fully enumer-
ated volumetric representations or octrees. These methods
typically have large memory requirements and thus, tend to be
restricted to low-resolution representations.

In this paper, we show that one can efficiently render the ex-
act visual hull without constructing an auxiliary geometric or
volumetric representation. The algorithm we describe is “image
based” in that all steps of the rendering process are computed in
“image space” coordinates of the reference images.

We also use the reference images as textures when shading
the visual hull. To determine reference images that can be used,
we compute which reference cameras have an unoccluded view of
each point on the visual hull. We present an image-based visibility
algorithm based on epipolar geometry and McMillan's occlusion
compatible ordering [18] that allows us to shade the visual hull in
roughly constant time per output pixel.

Using our image-based visual hull (IBVH) algorithm, we
have created a system that processes live video streams and ren-
ders the observed scene from a virtual camera's viewpoint in real
time. The resulting representation can also be combined with
traditional computer graphics objects.

2 Background and Previous Work
Kanade's virtualized reality system [20] [23] [13] is perhaps clos-
est in spirit to the rendering system that we envision. Their initial
implementations have used a collection of cameras in conjunction
with multi-baseline stereo techniques to extract models of dy-
namic scenes. These methods require significant off-line
processing, but they are exploring special-purpose hardware for
this task. Recently, they have begun exploring volume-carving
methods, which are closer to the approach that we use [26] [30].

Pollard’s and Hayes’ [21] immersive video objects allow
rendering of real-time scenes by morphing live video streams to
simulate three-dimensional camera motion. Their representation
also uses silhouettes, but in a different manner. They match sil-
houette edges across pairs of views, and use these
correspondences to compute morphs to novel views. This ap-
proach has some limitations, since silhouette edges are generally
not consistent between views.

Visual Hull. Many researchers have used silhouette infor-
mation to distinguish regions of 3D space where an object is and
is not present [22] [8] [19]. The ultimate result of this carving is a
shape called the object’s visual hull [14]. A visual hull always
contains the object. Moreover, it is an equal or tighter fit than the
object’s convex hull. Our algorithm computes a view-dependent,
sampled version of an object’s visual hull each rendered frame.

Suppose that some original 3D object is viewed from a set of
reference views R. Each reference view r has the silhouette sr with
interior pixels covered by the object. For view r one creates the
cone-like volume vhr defined by all the rays starting at the image's
point of view pr and passing through these interior points on its
image plane. It is guaranteed that the actual object must be con-
tained in vhr. This statement is true for all r; thus, the object must
be contained in the volume vhR=∩r∈∈∈∈Rvhr. As the size of R goes to
infinity, and includes all possible views, vhR converges to an ap-
proximate shape known as the visual hull vh∞ of the original
geometry. The visual hull is not guaranteed to be the same as the
original object since concave surface regions can never be distin-
guished using silhouette information alone.

In practice, one must construct approximate visual hulls us-
ing only a finite number of views. Given the set of views R, the
approximation vhR is the best conservative geometric description
that one can achieve based on silhouette information alone (see
Figure 1). If a conservative estimate is not required, then alterna-
tive representations are achievable by fitting higher order surface
approximations to the observed data [2].

Volume Carving. Computing high-resolution visual hulls
can be a tricky matter. The intersection of the volumes vhr re-
quires some form of CSG. If the silhouettes are described with a
polygonal mesh, then the CSG can be done using polyhedral
CSG, but this is very hard to do in a robust manner.

A more common method used to convert silhouette contours
into visual hulls is volume carving [22] [8] [29] [19] [5] [27].
This method removes unoccupied regions from an explicit volu-
metric representation. All voxels falling outside of the projected
silhouette cone of a given view are eliminated from the volume.
This process is repeated for each reference image. The resulting
volume is a quantized representation of the visual hull according
to the given volumetric grid and the reference image set. A major
advantage of our view-dependent method is that it minimizes
artifacts resulting from this quantization.

CSG Rendering. A number of algorithms have been de-
veloped for the fast rendering of CSG models, but most are ill
suited for our task. The algorithm described by Rappoport [24],

1

2
3

Figure 2 – Computing the IBVH involves three steps. First, the
desired ray is projected onto a reference image. Next, the intervals
where the projected ray crosses the silhouette are determined.
Finally, these intervals are lifted back onto the desired ray where
they can be intersected with intervals from other reference images.

requires that each solid be first decomposed to a union of convex
primitives. This decomposition can prove expensive for compli-
cated silhouettes. Similarly, the algorithm described in [11]
requires a rendering pass for each layer of depth complexity. Our
method does not require preprocessing the silhouette cones. In
fact, there is no explicit data structure used to represent the sil-
houette volumes other than the reference images.

Using ray tracing, one can render an object defined by a tree
of CSG operations without explicitly computing the resulting
solid [25]. This is done by considering each ray independently
and computing the interval along the ray occupied by each object.
The CSG operations can then be applied in 1D over the sets of
intervals. This approach requires computing a 3D ray-solid inter-
section. In our system, the solids in question are a special class of
cone-like shapes with a constant cross section in projection. This
special form allows us to compute the equivalent of 3D ray inter-
sections in 2D using the reference images.

Image-Based Rendering. Many different image-based
rendering techniques have been proposed in recent years
[3] [4] [15] [6] [12]. One advantage of image-based rendering
techniques is their stunning realism, which is largely derived from
the acquired images they use. However, a common limitation of
these methods is an inability to model dynamic scenes. This is
mainly due to data acquisition difficulties and preprocessing re-
quirements.

3 Visual-Hull Computation
Our approach to computing the visual hull has two distinct char-
acteristics: it is computed in the image space of the reference
images and the resulting representation is viewpoint dependent.
The advantage of performing geometric computations in image
space is that it eliminates the resampling and quantization artifacts
that plague volumetric approaches. We limit our sampling to the
pixels of the desired image, resulting in a view-dependent visual-
hull representation. In fact, our IBVH representation is equivalent
to computing exact 3D silhouette cone intersections and rendering
the result with traditional rendering methods.

Our technique for computing the visual hull is analogous to
finding CSG intersections using a ray-casting approach [25].
Given a desired view, we compute each viewing ray's intersection
with the visual hull. Since computing a visual hull involves only

intersection operations, we can perform the CSG calculations in
any order. Furthermore, in the visual hull context, every CSG
primitive is a generalized cone (a projective extrusion of a 2D
image silhouette). Because the cone has a fixed (scaled) cross
section, the 3D ray intersections can be reduced to cheaper 2D ray
intersections. As shown in Figure 2 we perform the following
steps: 1) We project a 3D viewing ray into a reference image. 2)
We perform the 1D intersection of the projected ray with the 2D
silhouette. These 1D intersections result in a list of intervals along
the ray that are interior to the cone's cross-section. 3) Each 1D
interval is then lifted back into 3D using a simple projective map-
ping, and then intersected with the results of the ray-cone
intersections from other reference images. A naïve algorithm for
computing these IBVH ray intersections follows:

IBVHisect (intervalImage &d, refImList R){
 for each referenceImage r in R
 computeSilhouetteEdges (r)
 for each pixel p in desiredImage d do
 p.intervals = {0..inf}
 for each referenceImage r in R
 for each scanline s in d
 for each pixel p in s
 ray3D ry3 = compute3Dray(p,d.camInfo)
 lineSegment2D l2 = project3Dray(ry3,r.camInfo)
 intervals int2D = calcIntervals(l2,r.silEdges)
 intervals int3D = liftIntervals(int2D,r.camInfo,ry3)
 p.intervals = p.intervals ISECT int3D
}

To analyze the efficiency of this algorithm, let n be the num-
ber of pixels in a scanline. The number of pixels in the image d is
O(n2). Let k be the number of reference images. Then, the above
algorithm has an asymptotic running time O(ikn2), where i is the
time complexity of the calcintervals routine. If we test for the
intersection of each projected ray with each of the e edges of the
silhouette, the running time of calcintervals is O(e). For large
classes of scenes, we can describe the average number of edges on
the boundary of a silhouette to be O(ln) where l is the average
number of times that a projected ray intersects the silhouette1.
Thus, the running time of IBVHisect to compute all of the 2D
intersections for a desired view is O(lkn3).

The performance of this naïve algorithm can be improved by
taking advantage of incremental computations that are enabled by
the epipolar geometry relating the reference and desired images.
These improvements will allow us to reduce the amortized cost of
1D ray intersections to O(l) per desired pixel, resulting in an im-
plementation of IBVHisect that takes O(lkn2).

Given two camera views, a reference view r and a desired
view d, we consider the set of planes that share the line connect-
ing the cameras’ centers. These planes are called epipolar planes.
Each epipolar plane projects to a line in each of the two images,
called an epipolar line. In each image, all such lines intersect at a
common point, called the epipole, which is the projection of one
of the camera's center onto the other camera's view plane [9].

As a scanline of the desired view is traversed, each pixel pro-
jects to an epipolar line segment in r. These line segments
emanates from the epipole edr, the image of d's center of projec-
tion onto r's image plane (see Figure 3), and trace out a “pencil”
of epipolar lines in r. The slopes of these epipolar line segments
will either increase or decrease monotonically depending on the
direction of traversal (Green arc in Figure 3). We take advantage
of this monotonicity to compute silhouette intersections for the
whole scanline incrementally.

1 We assume reference images also have O(n2) pixels.

r1
r2

r3
r4

r5

r6

rpr1
rpr2

rpr3
rpr4

rpr5
rpr6

Desired Image

Reference Image

Figure 3 – The pixels of a scanline in the desired image trace out
a pencil of line segments in the reference image. An ordered tra-
versal of the scanline will sweep out these segments such that their
angle about the epipole varies monotonically.

The silhouette contour of each reference view is represented
as a list of edges enclosing the silhouette’s boundary pixels. These
edges are generated using a 2D variant of the marching cubes
approach [16]. Next, we sort the O(nl) contour vertices in increas-
ing order by the slope of the line connecting each vertex to the
epipole. These sorted vertex slopes are divided into O(nl) bins.
Bin Bi has an angular extent spanning between the slopes of the
ith and i+1st slope in the sorted list. In each bin Bi we place all
edges that are intersected by epipolar lines with an angle falling
within the bin’s extent. During IBVHisect as we traverse the
pixels along a scanline in the desired view, the projected corre-
sponding view rays fan across the epipolar pencil in the reference
view with increasing slope. Concurrently, we scan through the list
of bins. The appropriate bin for each epipolar line is found and it
is intersected with the edges in that bin. This procedure is analo-
gous to merging two sorted lists, which can be done in a time
proportional to the length of the lists (O(nl) in our case).

For each scanline in the desired image we evaluate n viewing
rays. For each viewing ray we compute its intersection with edges
in a single bin. Each bin contains on average O(l) silhouette
edges. Thus, this step takes O(l) time per ray. Simultaneously we
traverse the sorted set of O(nl) bins as we traverse the scanline.
Therefore, one scanline is computed in O(nl) time. Over n scanli-
nes in k reference images2, this gives a running time of O(lkn2).
Pseudocode for the improved algorithm follows.

IBVHisect (intervalImage &d, refImList R){
 for each referenceImage r in R
 computeSilhouetteEdges (r)
 for each pixel p in desiredImage d do
 p.intervals = {0..inf}
 for each referenceImage r in R
 bins b = constructBins(r.caminfo, r.silEdges, d.caminfo)
 for each scanline s in d
 incDec order = traversalOrder(r.caminfo,d.caminfo,s)
 resetBinPositon(b)
 for each pixel p in s according to order
 ray3D ry3 = compute3Dray(p,d.camInfo)
 lineSegment2D l2 = project3Dray(ry3,r.camInfo)
 slope m = ComputeSlope(l2,r.caminfo,d.caminfo)
 updateBinPosition(b,m)
 intervals int2D = calcIntervals(l2,b.currentbin)
 intervals int3D = liftIntervals(int2D,r.camInfo,ry3)
 p.intervals = p.intervals ISECT int3D
}

It is tempting to apply further optimizations to take greater
advantage of epipolar constraints. In particular, one might con-

2 Sorting the contour vertices takes O(nl log(nl)) and binning takes O(nl2).

Sorting and binning over k reference views takes O(knl log(nl)) and
O(knl2) correspondingly. In our setting, l << n so we view the total
complexity as O(lkn2).

sider rectifying each reference image with the desired image prior
to the ray-silhouette intersections. This would eliminate the need
to sort, bin, and traverse the silhouette edge lists. However, a call
to liftInterval would still be required for each pixel, giving
the same asymptotic performance as the algorithm presented. The
disadvantage of rectification is the artifacts introduced by the two
resampling stages that it requires. The first resampling is applied
to the reference silhouette to map it to the rectified frame. The
second is needed to unrectify the computed intervals of the de-
sired view. In the typical stereo case, the artifacts of rectification
are minimal because of the closeness of the cameras and the simi-
larity of their pose. But, when computing visual hulls the
reference cameras are positioned more freely. In fact, it is not
unreasonable for the epipole of a reference camera to fall within
the field of view of the desired camera. In such a configuration,
rectification is degenerate.

4 Visual-Hull Shading
The IBVH is shaded using the reference images as textures. In
order to capture as many view-dependent effects as possible a
view-dependent texturing strategy is used. At each pixel, the ref-
erence-image textures are ranked from "best" to "worst" according
to the angle between the desired viewing ray and rays to each of
the reference images from the closest visual hull point along the
desired ray. We prefer those reference views with the smallest
angle [7]. However, we must avoid texturing surface points with
an image whose line-of-sight is blocked by some other point on
the visual hull, regardless of how well aligned that view might be
to the desired line-of-sight. Therefore, visibility must be consid-
ered during the shading process.

When the visibility of an object is determined using its visual
hull instead of its actual geometry, the resulting test is conserva-
tive– erring on the side of declaring potentially visible points as
non-visible. We compute visibility using the visual hull approxi-
mation, VHR, as determined by IBVHisect. This visual hull is
represented as intervals along rays of the desired image d. Pseu-
docode for our shading algorithm is given below.

IBVHshade(intervalImage &d, refImList R){
 for each pixel p in d do
 p.best = BIGNUM
 for each referenceImage r in R do
 for each pixel p in d do
 ray3D ry3 = compute3Dray(p,d.camInfo)
 point3 pt3 = front(p.intervals,ry3)
 double s = angleSimilarity(pt3,ry3,r.camInfo)
 if isVisible(pt3,r,d)
 if (s < p.best)
 point2 pt2 = project(pt3,r.camInfo)
 p.color = sample_color(pt2,r)
 p.best = s
}

The front procedure finds the front most geometric point of the
IBVH seen along the ray. The IBVHshade algorithm has time
complexity O(vkn2), where v is the cost for computing visibility of
a pixel.

Once more we can take advantage of the epipolar geometry
in order to incrementally determine the visibility of points on the
visual hull. This reduces the amortized cost of computing visibil-
ity to O(l) per desired pixel, thus giving an implementation of
IBVHshade that takes O(lkn2).

Consider the visibility problem in flatland as shown in
Figure 4. For a pixel p, we wish to determine if the front-most
point on the visual hull is occluded with respect to a particular
reference image by any other pixel interval in d.

Figure 4 – In order to compute the visibility of an IBVH sample with
respect to a given reference image, a series of IBVH intervals are
projected back onto the reference image in an occlusion-
compatible order. The front-most point of the interval is visible if it
lies outside of the unions of all preceding intervals.

Efficient calculation can proceed as follows. For each refer-
ence view r, we traverse the desired-view pixels in front-to-back
order with respect to r (left-to-right in Figure 4). During traversal,
we accumulate coverage intervals by projecting the IBVH pixel
intervals into the reference view, and forming their union. For
each front most point, pt3, we check to see if its projection in the
reference view is already covered by the coverage intervals com-
puted thus far. If it is covered, then pt3 is occluded from r by the
IBVH. Otherwise, pt3 is not occluded from r by either the IBVH
or the actual (unknown) geometry.

visibility2D(intervalFlatlandImage &d, referenceImage r){
 intervals coverage = <empty>
 for each pixel p in d do \\front to back in r
 ray2D ry2 = compute2Dray(p,d.camInfo)
 point2 pt2 = front(p.intervals,ry2);
 point1D p1 = project(pt2,r.camInfo)
 if contained(p1,coverage)
 p.visible[r] = false
 else
 p.visible[r] = true
 intervals tmp =
 prjctIntrvls(p.intervals,ry2,r.camInfo)
 coverage = coverage UNION tmp
}

This algorithm runs in O(nl), since each pixel is visited once, and
containment test and unions can be computed in O(l) time.

Figure 5 – Ideally, the visibility of points in 3D could be computed
by applying the 2D algorithm along epipolar planes.

In the continuous case, 3D visibility calculations can be re-
duced to a set of 2D calculations within epipolar planes (Figure
5), since all visibility interactions occur within such planes. How-
ever, the extension of the discrete 2D algorithm to a complete
discrete 3D solution is not trivial, as most of the discrete pixels in
our images do not exactly share epipolar planes. Consequently,
one must be careful in implementing conservative 3D visibility.

Epipole

Figure 6 – An epipolar wedge includes all pixels between two epi-
polar lines that might potentially occlude each other.

A guaranteed conservative, actually over-conservative, visi-
bility solution can be computed as follows. We define an epipolar
wedge that starts from the epipole erd in the desired view, and
extends to a pixel-width interval on the image boundary. Depend-
ing on the relative camera views, we traverse the wedge either
towards or away from the epipole [18]. All pixels that are touched
by a wedge can be computed with two “nearest-grid DDA” lines.
For each pixel in the wedge, we compute its visibility with respect
to other pixels in the wedge using the 2D-visibility algorithm
previously discussed. If a pixel is declared visible, then no geome-
try within the wedge could have occluded this pixel in the
reference view. Since a pixel may be included in more than one
wedge, the AND of its visibility test in all relevant wedges deter-
mines its final visibility. There are O(n) wedges. The unions of
their extents cover the whole image. Each wedge has O(n) pixels
traversed, so visibility can be computed in O(lkn2).

The visibility test described above can be excessively con-
servative, particularly when combined with the inherent tendency
of the visual hull to block surface regions that are not occluded by
the actual geometry. It is possible to achieve better visual results
by choosing a different visibility criterion. Consider a sample-
sized patch on the visual hull to be visible when any ray from the
epipole has an unobscured view of any portion of the patch. Un-
der this definition, the ANDing step of the conservative algorithm
is replaced with an OR. This modification provides us with a cer-
tain amount of “hole-filling” in regions that would otherwise be
considered occluded, and it provides a small performance advan-
tage. We have used this non-conservative visibility criterion, for
the results presented here, and there are few noticeable artifacts.

The total time complexity of our IBVH algorithms is O(lkn2),
which allows for efficient rendering of IBVH objects. These algo-
rithms are well suited to distributed and parallel implementations.
We have demonstrated this efficiency with a system that computes
IBVHs in real time from live video sequences.

Figure 7 – Four segmented reference images from our system.

5 System Implementation
Our system uses four calibrated Sony DFW500 FireWire video
cameras. We distribute the computation across five computers,
four that process video and one that assembles the IBVH (see
Figure 7). Each camera is attached to a 600 MHz desktop PC that
captures the video frames and performs the following processing

steps. First, it corrects for radial lens distortion using a lookup
table. Then it segments out the foreground object using back-
ground-subtraction [1] [10]. Finally, the silhouette and texture
information are compressed and sent over a 100Mb/s network to a
central server for IBVH processing.

Our server is a quad-processor 550 MHz PC. We interleave
the incoming frame information between the 4 processors to in-
crease throughput. The server runs the IBVH intersection and
shading algorithms. The resulting IBVH objects can be depth-
buffer composited with an OpenGL background to produce a full
scene. In the examples shown a model of our graphics lab made
with the Canoma modeling system was used as a background.

Figure 8 – A plot of the execution times for each step of the IBVH
rendering algorithm on a single processor. A typical IBVH might
cover approximately 8000 pixels in a 640 × 480 image and it would
execute at greater than 8 frames per second on our 4 CPU ma-
chine.

In Figure 8, the performances of the different stages in the
IBVH algorithm are given. For these tests, 6 input images with
resolutions of 256 × 256 were used. The average number of times
that a projected ray crosses a silhouette is 6.5. Foreground seg-
mentation (done on client) takes about 85 ms. We adjusted the
field of view of the desired camera, to vary the number of pixels
occupied by the object. This graph demonstrates the linear growth
of our algorithm with respect to the number of output pixels.

6 Conclusions and Future Work
We have described a new image-based visual-hull rendering algo-
rithm and a real-time system that uses it. The algorithm is efficient
from both theoretical and practical standpoints, and the resulting
system delivers promising results.

The choice of the visual hull for representing scene elements
has some limitations. In general, the visual hull of an object does
not match the object’s exact geometry. In particular, it cannot
represent concave surface regions. This shortcoming is often con-
sidered fatal when an accurate geometric model is the ultimate
goal. In our applications, the visual hull is used largely as an im-
poster surface onto which textures are mapped. As such, the visual
hull provides a useful model whose combination of accurate sil-
houettes and textures provides surprisingly effective renderings
that are difficult to distinguish from a more exact model. Our
system also requires accurate segmentations of each image into
foreground and background elements. Methods for accomplishing
such segmentations include chromakeying and image differenc-
ing. These techniques are subject to variations in cameras,
lighting, and background materials.

We plan to investigate techniques for blending between tex-
tures to produce smoother transitions. Although we get impressive
results using just 4 cameras, we plan to scale our system up to
larger numbers of cameras. Much of the algorithm parallelizes in a
straightforward manner. With k computers, we expect to achieve
O(n2 l log k) time using a binary-tree based structure.

7 Acknowledgements
We would like to thank Kari Anne Kjølaas, Annie Chio, Tom
Buehler, and Ramy Sadek for their help with this project. We also
thank DARPA and Intel for supporting this research effort. NSF
Infrastructure and NSF CAREER grants provided further aid.

8 References
[1] Bichsel, M. “Segmenting Simply Connected Moving Objects in a

Static Scene.” IEEE PAMI 16, 11 (November 1994), 1138-1142.
[2] Boyer, E., and M. Berger. “3D Surface Reconstruction Using

Occluding Contours.” IJCV 22, 3 (1997), 219-233.
[3] Chen, S. E. and L. Williams. “View Interpolation for Image Synthe-

sis.” SIGGRAPH 93, 279-288.
[4] Chen, S. E. “Quicktime VR – An Image-Based Approach to Virtual

Environment Navigation.” SIGGRAPH 95, 29-38.
[5] Curless, B., and M. Levoy. “A Volumetric Method for Building

Complex Models from Range Images.” SIGGRAPH 96, 303-312.
[6] Debevec, P., C. Taylor, and J. Malik, “Modeling and Rendering

Architecture from Photographs.” SIGGRAPH 96, 11-20.
[7] Debevec, P.E., Y. Yu, and G. D. Borshukov, “Efficient View-

Dependent Image-based Rendering with Projective Texture Map-
ping.” Proc. of EGRW 1998 (June 1998).

[8] Debevec, P. Modeling and Rendering Architecture from Photo-
graphs. Ph.D. Thesis, University of California at Berkeley,
Computer Science Division, Berkeley, CA, 1996.

[9] Faugeras, O. Three-dimensional Computer Vision: A Geometric
Viewpoint. MIT Press, 1993.

[10] Friedman, N. and S. Russel. “Image Segmentation in Video Se-
quences.” Proc 13th Conference on Uncertainty in Artifical
Intelligence (1997).

[11] Goldfeather, J., J. Hultquist, and H. Fuchs. “Fast Constructive Solid
Geometry Display in the Pixel-Powers Graphics System.” SIG-
GRAPH 86, 107-116.

[12] Gortler, S. J., R. Grzeszczuk, R. Szeliski, and M. F. Cohen. “The
Lumigraph.” SIGGRAPH 96, 43-54.

[13] Kanade, T., P. W. Rander, and P. J. Narayanan. “Virtualized Reality:
Constructing Virtual Worlds from Real Scenes.” IEEE Multimedia
4, 1 (March 1997), 34-47.

[14] Laurentini, A. “The Visual Hull Concept for Silhouette Based Image
Understanding.” IEEE PAMI 16,2 (1994), 150-162.

[15] Levoy, M. and P. Hanrahan. “Light Field Rendering.” SIGGRAPH
96, 31-42.

[16] Lorensen, W.E., and H. E. Cline. “Marching Cubes: A High Resolu-
tion 3D Surface Construction Algorithm.” SIGGRAPH 87, 163-169.

[17] McMillan, L., and G. Bishop. “Plenoptic Modeling: An Image-
Based Rendering System.” SIGGRAPH 95, 39-46.

[18] McMillan, L. An Image-Based Approach to Three-Dimensional
Computer Graphics, Ph.D. Thesis, University of North Carolina at
Chapel Hill, Dept. of Computer Science, 1997.

[19] Moezzi, S., D.Y. Kuramura, and R. Jain. “Reality Modeling and
Visualization from Multiple Video Sequences.” IEEE CG&A 16, 6
(November 1996), 58-63.

[20] Narayanan, P., P. Rander, and T. Kanade. “Constructing Virtual
Worlds using Dense Stereo.” Proc. ICCV 1998, 3-10.

[21] Pollard, S. and S. Hayes. “View Synthesis by Edge Transfer with
Applications to the Generation of Immersive Video Objects.” Proc.
of VRST, November 1998, 91-98.

[22] Potmesil, M. “Generating Octree Models of 3D Objects from their
Silhouettes in a Sequence of Images.” CVGIP 40 (1987), 1-29.

[23] Rander, P. W., P. J. Narayanan and T. Kanade, “Virtualized Reality:
Constructing Time Varying Virtual Worlds from Real World
Events.” Proc. IEEE Visualization 1997, 277-552.

[24] Rappoport, A., and S. Spitz. “Interactive Boolean Operations for
Conceptual Design of 3D solids.” SIGGRAPH 97, 269-278.

[25] Roth, S. D. “Ray Casting for Modeling Solids.” Computer Graphics
and Image Processing, 18 (February 1982), 109-144.

[26] Saito, H. and T. Kanade. “Shape Reconstruction in Projective Grid
Space from a Large Number of Images.” Proc. of CVPR, (1999).

[27] Seitz, S. and C. R. Dyer. “Photorealistic Scene Reconstruction by
Voxel Coloring.” Proc. of CVPR (1997), 1067-1073.

[28] Seuss, D. “The Cat in the Hat,” CBS Television Special (1971).
[29] Szeliski, R. “Rapid Octree Construction from Image Sequences.”

CVGIP: Image Understanding 58, 1 (July 1993), 23-32.
[30] Vedula, S., P. Rander, H. Saito, and T. Kanade. “Modeling, Com-

bining, and Rendering Dynamic Real-World Events from Image
Sequences.” Proc. 4th Intl. Conf. on Virtual Systems and Multimedia
(Nov 1998).

Figure 9 - Example IBVH images. The upper images show depth maps of the computed visual hulls. The lower images show shaded render-
ings from the same viewpoint. The hull segment connecting the two legs results from a segmentation error caused by a shadow.

1

Creating and Rendering Image-Based Visual Hulls

Chris Buehler, Wojciech Matusik, Leonard McMillan
MIT, LCS Computer Graphics Group

Steven J. Gortler
Harvard University

Abstract
In this paper, we present efficient algorithms for creating and rendering image-based visual hulls. These
algorithms are motivated by our desire to render real-time views of dynamic, real-world scenes. We first
describe the visual hull, an abstract geometric entity useful for describing the volumes of objects as
determined by their silhouettes. We then introduce the image-based visual hull, an efficient
representation of an object’s visual hull. We demonstrate two desirable properties of the image-based
visual hull. First, it can be computed efficiently (i.e., in real-time) from multiple silhouette images.
Second, it can be quickly rendered from novel viewpoints. These two properties motivate our use of the
image-based visual hull in a real-time rendering system that we are currently developing .

Introduction
Computer graphics has long been concerned with the rendering of static synthetic scenes, or scenes
composed of non-moving computer-created models. In time, attention turned to the rendering of dynamic
synthetic scenes, as exemplified by virtual reality systems, most modern computer games, and the recent
computer-animated movies. More recently, many researchers have embraced an image-based rendering
approach in which scenes are represented by simple images that may be synthetic or acquired from the
real world (say, with a digital camera). In this spirit, work has been done in rendering static acquired
scenes, non-moving scenes acquired from real-world imagery (e.g., QuicktimeVR). However, relatively
little work has been done in the case of dynamic acquired scenes. It is the goal of our work to develop an
appropriate representation and rendering system for such scenes.

Figure 1. A hypothetical arrangement for acquiring dynamic scenes.

2

Using our system, a user can control a virtual camera within a moving scene that is acquired in real-
time. Such a system has many potential uses. A commonly cited example is the virtual sports camera:
users viewing a sporting event would be able to view the event from any angle, perhaps to focus on their
favorite player or to see the action better. We are also targeting our current system at other tasks:
teleconferencing and virtual sets. In a teleconferencing setting, our system would allow participants to
navigate the virtual conference room or change their gaze while viewing the other participants moving in
real-time. Applied to synthetic sets, our system would enable a director to see his actors perform in real-
time in a dynamic three-dimensional virtual set.

A dynamic, acquired rendering system can be designed analogously to a static, acquired one. Static
scenes (or objects) are typically acquired from many still photographs taken at different locations. Many
photos are acquired, and often the same camera is used to take them. To extend this scenario to the
dynamic case, we substitute video sequences for still photographs and place multiple, synchronized video
cameras around the scene to acquire these sequences (see Figure 1). The dynamic setup is more restrictive
than the static case: the number of input images is limited by the physical number of video cameras, and
the cameras can only be placed in locations that do not impede the activity in the scene.

In both the static and dynamic cases, the acquired images are generally processed in some way—
details vary from system to system— after which new images of the scene (or object) can be produced from
arbitrary camera locations. In the dynamic case, a distinction can be made between real-time systems,
those that process video and synthesize views at interactive rates, and off-line systems, those that require
more extensive processing or rendering before viewing. In this paper, we are concerned with real-time
systems.

There are a number of challenges inherent in real-time systems. The first is processing all the video
frames at interactive rates. Obvious approaches for extracting useful information from multiple video
streams, such as multi-baseline stereo algorithms, run too slow on current general-purpose hardware for a
real-time system. The second challenge is rendering new views such that a virtual image exhibits as
much visual fidelity as an image from one of the real cameras. For example, voxel-based systems often
display noticeable artifacts in their images as a result of the low-resolution voxel data structure.

Our real-time system for rendering dynamic, acquired objects is designed to meet these challenges.
We utilize between five and ten synchronized, digital video cameras to acquire continuous video streams.
To achieve interactive rates, we process the video streams using efficient silhouette-based techniques to
create a approximate on-the-fly models (called the visual hull) of the dynamic scene objects. We then
create novel views of these dynamic objects using image-based rendering techniques, which are fast and
preserve much of the detail of the original video sequences.

Related Work
Kanade’s virtualized reality system [Kanade97] is perhaps closest in spirit to the dynamic acquired
rendering system that we envision, although it is not currently a real-time system. They use a collection of
cameras in conjunction with multi-baseline stereo techniques to extract models of dynamic scenes.
Currently their method still requires significant off-line preprocessing time to perform the stereo
correlation, but they are exploring special purpose hardware for this task, an option we wish to avoid.
Recently, they have begun using silhouette methods such as the ones we use to improve the quality of their
stereo reconstruction [Vedula98].

Pollard and Hayes [Pollard98] attempt to solve the problem of rendering real-time acquired data with
their immersive video objects. Immersive video objects are annotated video streams that can be morphed
in real-time to simulate three-dimensional camera motion. Their representation also utilizes object
silhouettes, but in a different manner. They match silhouette edges across multiple views, and use these
correspondences to compute a morph to a novel view. This approach has some problems, however, as
silhouette edges are generally not consistent between views. These inconsistencies require their cameras
to be placed close together, limiting the usefulness of the system.

Static Silhouette Methods
Silhouette contours have been used by computer vision researchers build approximate geometric models of
static objects and scenes. These techniques are attractive because of the ease of extracting and working

3

with silhouettes.
Typically these object models are computed by using silhouettes to “ carve” away regions of empty

space. Potmesil describes a method for computing a voxel representation of objects from sequences of
silhouettes [Potmesil87]. He uses an octree data structure to represent a binary volume of space, and does
not attack the problem of reconstructing novel views of his objects.

Szeliski has implemented a similar idea [Szeliski92]. He uses a turntable to rotate objects in front of a
real camera. After automatically extracting object silhouettes, he computes an octree-based voxel
representation of the object by projecting octree nodes into the silhouette images.

Laurentini, recognizing the interest in silhouette methods, has introduced a formalism for analyzing
object reconstruction from silhouettes [Laurentini94]. Central to his theory is the concept of the visual
hull, which, is the best approximation to an object’s shape that one can build from simple silhouettes. His
framework is useful for understanding the limitations of silhouette methods, something that has not been
quantified in earlier work.

Other volumetric carving methods, related to silhouette techniques, have also been suggested. These
include volumetric reconstruction from active laser-range data [Curless96] and volumetric reconstruction
based on photometric sample correspondences [Sietz97]. These techniques could be used to improve upon
the approximate object models that are obtained from silhouettes. However, currently, they are not as well
suited to real-time implementation.

Image-Based Rendering
Image-based rendering has been proposed as a practical alternative to the traditional modeling/rendering
framework. In image based rendering, one starts with images and directly produces new images from this
data. This avoids the traditional (i.e., polygonal) modeling process, and often leads to rendering
algorithms whose running time is independent of the scene’s geometric and photometric complexity.

Chen’s QuicktimeVR [Chen95] is one of the first commercial static, acquired rendering systems. This
system relies heavily on image-based rendering techniques to produce photo-realistic panoramic images of
real scenes. Although successful, the system has some limitations: the scenes are static and the viewpoint
is fixed.

McMillan’s plenoptic modeling system [McMillan95] is QuicktimeVR-like, although it does allow a
translating viewpoint. The rendering engine is based on three-dimensional image warping, a now
commonplace image-based rendering technique. Dynamic scenes are not supported as the panoramic
input images require much more off-line processing than the simple QuicktimeVR images.

Light field methods [Gortler96, Levoy96] represent scenes as a large database of images. Processing
requirements are modest making real-time implementation feasible, if not for the large number of cameras
required (on the order of hundreds). The cameras must also be placed close together, resulting in a small
effective navigation volume for the system.

Paper Organization
In the next section we describe the visual hull, the approximate geometric representation that we use in
our system. We demonstrate how it is related to object silhouettes, and why silhouette-based analysis
techniques are well suited to this sort of system. We also point out some of the problems with using the
visual hull as an object approximation.

In the second section, we describe various algorithms for computing visual hulls using a image-based
representation. The first algorithm is slow, but conceptually simple, while the second algorithm is faster
and more sophisticated. We present advantages and disadvantages and runtime analyses.

The third section discusses various rendering algorithms for image-based visual hulls. We have
investigated at least four algorithms, each with strengths and weaknesses. In this paper, we discuss three
of the algorithms.

Silhouettes and the Visual Hull
Silhouette methods are well suited to real-time analysis of object shape. First, computing object
silhouettes is fast and relatively robust. Second, multiple silhouettes of an object give a strong indication

4

of that object’s shape.

Computing Silhouettes
An object silhouette is essentially a binary segmentation of an image in which pixels are labeled
“ foreground” (belonging to the silhouette) or “ background.” In this paper, background pixels are typically
drawn in white and foreground pixels non-white.

One common technique for computing silhouettes is chromakeying, or bluescreen matting [Smith96].
In this technique, the actual scene background is a single uniform color that is unlikely to appear in
foreground objects. Foreground objects can then be segmented from the background by using color
comparisons. Chromakey techniques are widely used in television weather forecasts and for cinematic
special effects, which demonstrates their speed and quality. However, chromakey techniques do not admit
arbitrary backgrounds, which is a severe limitation.

More general is a technique called background subtraction or image differencing [Bichsel94,
Friedman97]. In background subtraction, a statistical model of a background scene is accumulated from
many images. Changes in the scene, such as a figure walking into view, can then be detected by
computing the difference between the new frame and the retained model. Differences that fall outside the
allowed margins of the model are classified as foreground objects. There are many variations on the
above two algorithms, but almost all of them are fast and robust enough to be used in a real-time system.

Shape from Silhouettes: The Visual Hull
It seems intuitive that the shape of an object can be recovered from many silhouettes. However, it is also
clear that not all shapes can be recovered from silhouettes alone. For example, the concave region inside
a bowl will never be evident in any silhouette, so any method based solely on silhouettes will fail to
reconstruct it completely [Koenderink90].

Laurentini has introduced the concept of the visual hull for understanding the shapes of objects that
can be reconstructed from their silhouettes [Laurentini94]. Loosely, the visual hull of an object is the
closest approximation to that object that can be obtained from silhouettes alone.

The visual hull of an object depends both on the object itself and on a particular viewing region. A
viewing region is a set of points in space from which silhouettes of an object are seen. The viewing region
might be the set of all points enclosing the object, or, in a more practical case, a finite set of camera
positions arranged around the object.

Formally, the visual hull of object S with respect to viewing region R, denoted VH(S, R), is a volume in
space such that for each point P ∈ VH(S,R) and each viewpoint V ∈ R, the half-line from V through P
contains at least one point of S [Laurentini94]. This definition simply states that the visual hull consists
of all points in space whose images lie within all silhouettes viewed from the viewing region. Stated
another way, the visual hull is the maximal object that has the same silhouettes as the original object, as
viewed from the viewing region.

It is useful to think of an alternative, constructive definition of the visual hull with respect to a viewing
region. Given a point V in the viewing region R, the silhouette of the object as seen from V defines a
generalized cone in space with its apex at V (see Figure 2). The intersection of the cones from every point
in R results in the visual hull with respect to R.

5

Figure 2. The intersection of the three silhouette cones defines the visual hull as
seen from the viewing region. In this case, the viewing region contains only the
apexes of the three silhouette cones.

This definition is useful because it implies a practical way to compute a visual hull. Almost all useful
visual hull construction algorithms use some sort of volume intersection technique, as discussed in later
sections.

Limitations of the Visual Hull
In the following discussion, we will assume that the viewing region for the visual hull is the set of all
“ reasonable” vantage points: those points outside the convex hull of the object. Using this special
viewing region results in the closest possible approximation to the actual object. This viewing region is
also assumed whenever reference is made to a visual hull whose viewing region is not implied by context.

The visual hull is a superset that contains the actual object’s shape. It cannot represent concave
surface regions (e.g., the inside of a bowl), in general, or even convex or hyperbolic points that are below
the rim of a concavity (e.g., a marble inside a bowl). However, the visual hull is a tighter fit to the object
than a convex hull, which only includes object regions that are globally convex. The visual hull of a
convex object is the same as the object. However, the visual hull of an object composed of multiple,
disjoint convex objects may not be the same as the actual objects, see Figure 3.

Figure 3. The visual hull of these two gray circles (black and gray regions) is
slightly larger than the circles themselves. It is delimited by the bi-tangent lines
drawn in the figure.

When the viewing region of the visual hull does not completely surround the object, the visual hull

6

becomes a coarser approximation and may even be larger than the convex hull. The visual hull becomes
even worse for finite viewing regions, and may exhibit undesirable artifacts such as phantom volumes
(Figure 4).

Figure 4. Intersecting the two silhouette cones results in “phantom” volumes,
shown in gray on the left. A third silhouette can resolve the problem in this case
(right).

In spite of these limitations, the visual hull is still a useful entity for approximating an object’s shape
in a dynamic rendering system. Object concavities can largely be camouflaged by object motion or hidden
with surface texturing. Viewing regions that do not surround the object can be used as long as the virtual
camera is confined to locations within the viewing region, as the visual hull is guaranteed to reproduce
correctly all silhouettes seen from within the viewing region. Artifacts arising from using a finite viewing
region (i.e., a finite amount of cameras) can be lessened by sampling a desired viewing region with
appropriately placed viewpoints.

An Image-Based Visual Hull
One could attempt to compute a visual hull geometrically, but this approach, based on the intersection of
multiple polytopes, is difficult to implement robustly and the resulting representation is composed of a
great number of polygons if the silhouette contour is complex.

As a result, most visual hulls have been computed volumetrically by successively carving away all
voxels outside of the projected silhouette cone. However, volumetric approaches suffer from problems
with resolution. First, volumetric data structures are generally very memory intensive. This limitation is
reduced somewhat by the fact that visual hull is a binary volume, and it is thus well suited to octree-type
representations. However, it is still difficult to retain the full precision of the original silhouette images
using a standard volumetric representation. If arbitrary configurations of input images are allowed then
the intersection of the projected regions from them can have an arbitrarily high spatial frequency content.
Thus no uniform spatial sampling is sufficient for exactly representing the final volume. Of course,
reasonable approximations can be made by requiring the resulting volume to project to a silhouette
contour that is within some error bound relative to the original.

In our approach, we prefer to use an image-based representation of the visual hull, which alleviates
some of the problems with a standard voxel approach. In the graphics community, the term “ image-
based” has had many interpretations. In the strictest sense, an image-based representation consists solely
of images (possibly along with matrices describing camera configurations). Along these lines, an image-
based representation of the visual hull is simply the set of silhouettes themselves (along with the
associated viewpoints). By definition, such a representation preserves the full resolution of the input
images and contains no more or no less information than that provided by the silhouettes.

More generally, an “ image-based” representation is often identified with a two-dimensional, sampled
representation. For example, a standard color image is a rectangular grid of color samples, and a depth
image is a grid of depth samples. Note that the samples are not considered connected in any way; they
simply exist at regular intervals. The bulk of this paper is concerned with this second form of image-
based visual hull.

7

This second type of image-based visual hull is constructed with respect to some viewpoint V in the
viewing region of the visual hull. We can imagine that a camera at this viewpoint sees a silhouette image,
which is discretized into a grid of pixels (i.e., samples). For each pixel in this silhouette image a list of
occupancy intervals is stored. If a pixel does not belong to the silhouette (i.e., it is background), then the
list is empty. Otherwise, the list contains intervals of space that are occupied by the visual hull of the
object. These intervals, extruded over the solid angle subtended by the pixel, represent the region of the
visual hull that projects to that pixel. The union of all such slices gives the visual hull as sampled from
that viewpoint. In Figure 5, we show a slice of an image-based visual hull. The lines represent viewing
rays along one column of the image, and the dark line segments denote occupied regions of space.

Figure 5. A single slice of an image-based visual hull. A full image-based visual
hull contains many such slices, forming a volume in space.

Advantages of the Image-Based Representation
The image-based representation has a number of advantages in terms of storage requirements,
computational efficiency, and ease of rendering.

The occupancy intervals can be stored as pairs of real numbers (where the numbers represent the
minimum and maximum depths of the interval), similar to a run-length encoded volume. Thus, while the
volume is discretized in two dimensions, the third dimension is continuous, allowing for higher resolution
volumes than a voxel approach. Note also that this representation can be used for an arbitrary volume; it
is not specialized for a visual hull. Similar data structures have been used by [VanHook86] and
[Lacroute94] in traditional volume rendering settings.

Computing a visual hull using the image-based representation is much simpler than previous
approaches.
As we will show in the next section, the three-dimensional generalized cone intersections and the
volumetric carving operations of other methods are replaced with simple interval intersections in our
method. These interval intersections are fast and robust, allowing for a real-time calculation of the visual
hull.

Rendering the visual hull is also facilitated by the image-based representation. As we show in later
sections, this representation can be rendered using only slight modifications to the standard three-
dimensional image warp algorithm. This approach minimizes image resampling, as we only resample
during rendering, and produces renderings of quality comparable to the input video images.

Mathematical Preliminaries
We first introduce the mathematical notation and concepts that we use in the rest of the paper. Dotted

capital letters (e.g., C&) represent points in three-dimensional space, while lowercase over-bar letters
(e.g., x) represent homogeneous image (pixel) coordinates. Matrices (all are 3 x 3) are written in bold
capital letters (e.g., P), while scalars are lowercase (e.g., t). We denote equality up to a scale factor with a
dotted equals sign, =& .

8

One View
The basic quantity that we manipulate is a view, which is an image along with the viewpoint from which

it was seen. We characterize a view [P, C&] by a center of projection C& (i.e., the viewpoint) and an
inverse projection matrix P that transforms homogeneous image coordinates x to rays in three-
dimensional world space according to the following equation:

xtCtX P+= &&)(,

where)(tX& represents three-dimensional world points parameterized by the distance (or range) t along a

ray. Conceptually, these rays originate at C& and pass through the pixel x = [u, v, 1]T in the imaging
plane.

Often it is computationally more convenient to work with the reciprocal of the range parameter t . We
call this quantity the generalized disparity, defined as

t

1=δ .

Two Views
Two views [1P , 1C&] and [2P , 2C&] with different centers of projection (i.e., 1C& ≠ 2C&) are related by a so-

called epipolar geometry. This geometry describes how a ray through a pixel in one view is seen as an
epipolar line in the other view. Mathematically, this relationship between pixel coordinates in one view
and epipolar lines in a second view is expressed by the fundamental matrix 21F between the two views

[Faugeras93]. That is,

01212 =xx T F ,

where the quantity 121xF gives the coefficients of a line equation in the second image. Given two views

[1P , 1C&] and [2P , 2C&], their fundamental matrix can be computed as

1
1

2221 PPEF −= .

Matrix 2E is a matrix representation of the cross product defined such that

vev ×= 22E ,

where v is an arbitrary vector and vector 2e is the epipole, or the projection of the first view’s center of

projection onto the second view’s image plane. This epipole is computed as

)(21
1

22 CCe && −= −P ,

and the epipole of the first view with respect to the second is computed similarly.

Often we want to calculate a desired view from a known view. Given two views [1P , 1C&] and [2P ,

2C&], where the first one is known and the second one is desired, we can transform pixels from the known

view to pixels in the desired view using a three-dimensional image warping equation [McMillan96]:

)(21
1

2111
1

22 CCxx &&

& −+= −− PPP δ . (1)

This equation gives pixel coordinates 2x in the desired view of the point defined by the pixel 1x and the

disparity 1δ in the first view. Thus, computing a desired view from a single known view requires

auxiliary disparity information, which is often stored in the form of a depth image associated with the
known view.

In computing image-based visual hulls, we are often interested in recovering the range (or disparity)

9

parameter t2 given corresponding image points in two views. We solve this problem by computing the
range parameters of the points of closest approach of the two rays defined by the corresponding pixels in
two images as follows:

[]
2

2211

22112212
1

det

xx

xxxCC
t

PP

PPP

×
×−=

&&

.

The parameter 2t can be computed similarly.

Three Views
It has been shown [Shashua97] that three views are related by a mathematical entity called the trilinear
tensor. Similar to the fundamental matrix for two views, the trilinear tensor describes the relationship
between points and lines in the three views. A complete description of the trilinear tensor is beyond the
scope of this paper, however, we do present four equations derived from the tensor which relate the
coordinates of a pixel]1,,[yxp ′′′′=′′ in a third view to the coordinates of pixels in two other views

(]1,,[yxp = and]1,,[yxp ′′=′):

011313313 =−′+′′′−′′ i
i

i
i

i
i

i
i ppxpxxpx αααα ,

012323313 =−′+′′′−′′ i
i

i
i

i
i

i
i ppxpxypy αααα ,

,021313323 =−′+′′′−′′ i
i

i
i

i
i

i
i ppypyxpx αααα

022323323 =−′+′′′−′′ i
i

i
i

i
i

i
i ppypyypy αααα .

In the above equations, jk
iα (i,j,k = 1,2,3) is the 27 element trilinear tensor, and the notation

inm
i pα denotes a dot-product of a row of the tensor with p . The elements of jk

iα are obtained from the

three views [1P , 1C&], [2P , 2C&], and [3P , 3C&] according to the formulas given in [Shashua97].

The important quality of these equations, with regard to image synthesis, is that the third pixel’s
location is completely constrained by the locations of the two other pixels; no auxiliary depth image is
needed. As we will demonstrate, these equations can be exploited when rendering novel views given two
or more known views.

Creating Image-Based Visual Hulls
In the following sections, we describe algorithms for computing image-based visual hulls from a finite
number of silhouette images. In all of these algorithms, the input is assumed to be a set of k silhouettes
(i.e., binary images), their associated viewpoints, and a viewpoint from which the visual hull is to be
constructed. The algorithms output a sampled image of the visual hull, in which each pixel of the image
contains a list of occupied intervals of space.

To ease algorithm analysis, the input silhouettes are assumed to be square m x m arrays of pixels. The
output resolution of the image-based visual hull is n x n pixels.

The Basic Algorithm
We implement the same basic idea in all of our visual hull construction algorithms. We cast a ray into
space for each pixel in the desired view of the visual hull. We intersect this ray with the k silhouette cones
defined by the k silhouette views and record the intersections as pairs of enter/exit points (i.e., intervals).
This process results in k lists of intervals, which are then intersected together to form a single list. This
final list, representing the intersection of the viewing ray with the visual hull, is stored in our data
structure.

The key aspect of all our algorithms is that all of the ray/cone intersection calculations are done in two
dimensions rather than three. Recall that each silhouette cone is defined by a two-dimensional silhouette

10

image and a center of projection. Instead of projecting these cones into three-dimensional space and then
computing ray intersections, we can project the three-dimensional ray into the two-dimensional space of
the silhouette image and perform intersections there. The ray simply projects to a line (in fact, the
epipolar line as discussed in a previous section), and the resulting two-dimensional calculations are much
more tractable.

The above observations lead directly to an algorithm for computing the image-based visual hull:

for each pixel p = [x,y,1] in VHULL
initialize VHULL[x][y] = [depthmin, depthmax]

for each silhouette image SILi
compute fundamental matrix Fi
for each pixel p = [x,y,1] in VHULL

compute epipolar line coefficients Fip
trace epipolar line in image SILi
record list of silhouette contour intersection points [pi,k]
interval_list = []
for each pair of intersection points pi,2l and pi,2l+1

compute depthi,l,min and depthi,l,max measured w.r.t. VHULL
interval_list = interval_list ∪ [depthi,l,min, depthi,l,max]

endfor
VHULL[x][y] = VHULL[x][y] ∩ interval_list
endfor

endfor

The algorithm is illustrated in Figure 6. Six silhouettes from a synthetic dinosaur model are shown,
and the desired image-based visual hull is computed from the viewpoint of the upper left silhouette (the
primary view). Three pixels are labeled in this primary view. The corresponding epipolar line for each
pixel is shown in the remaining five (secondary) images. The algorithm processes one secondary image at
a time. First it detects each interval where the line crosses through the silhouette of the object. At each of
these silhouette contour crossings the length along the ray of the primary image is computed using the
equation for the point of closest approach. A list of these intervals is computed for each secondary image.
Finally, the interval lists are merged by computing their intersections across all secondary images. This
process is repeated for every pixel in the primary image.

Figure 6. The image-based visual hull is computed from the viewpoint shown in the
upper left. The epipolar lines corresponding to the three labeled pixels are shown
in the five other silhouettes.

11

Analysis
The basic algorithm, while conceptually simple, is not a particularly efficient way to compute image-based
visual hulls. The asymptotic running time is O(km2n), as the algorithm traces a line of length O(n) in k
images for each of m2 pixels in the primary view. This analysis ignores the number of intervals traced and
the cost of intersecting them. This omission is justified as there are typically far fewer intervals than the
number of pixels in one dimension of a secondary image, and certainly not more than this number. When
the primary and secondary images are of the same dimensions, a common case, then the running time is
O(kn3). Thus, we generally consider this an n-cubed algorithm.

The algorithm also suffers from some quantization problems. The digital epipolar lines traced by the
algorithm are generally not identical to the ideal epipolar lines. This discrepancy may cause the silhouette
intersection points to be slightly off. In practice, such quantization problems have been largely
unnoticeable.

Line-Cache Algorithm
The best running time we might expect from a visual hull construction algorithm is O(km2). This lower
bound arises from the fact that we need to fill in interval lists for m2 pixels, and we need to process k
views. One might imagine a faster algorithm, based on a hierarchical decomposition (e.g., a quadtree) of
the visual hull image, but here we will assume we want to create m2 individual interval lists. A
hierarchical decomposition, if desired, can then be applied to any of our algorithms.

The line-cache algorithm is an algorithm for computing the image-based visual hull that achieves the
O(km2) running time. The increased efficiency is due to a simple observation: multiple three-dimensional
rays from the primary image project to the same two dimensional line in the secondary images. This fact
can be understood from the epipolar geometry between two views. A viewing ray from the primary image
and the viewpoint of a secondary image are contained within a plane in space. This plane projects to an
epipolar line in the secondary image. Any other viewing ray from the primary image which also lies in
this plane projects to the same epipolar line in the secondary image.

The observation can also be demonstrated with a counting argument. It takes roughly O(n) lines of
length O(n) to fill a discrete (pixelized) two-dimensional space of size O(n2). Thus, if we project O(n2)
lines of length O(n) into this space, we can expect that O(n) lines will map to the same line. Of course,
this argument is really only valid in a discrete setting, which is the setting in which we compute our
image-based visual hulls.

Using the above observation, we amend our basic algorithm in the following way. When we attempt to
compute the two dimensional line/silhouette intersection, we first check in an “ epipolar line cache” data
structure to see if the intersection intervals have already been computed. If so, we used the cached results.
Otherwise, we compute the line intersections and store the resulting interval list in the line cache.

Epipole

Image

Figure 7. We determine line cache indices by the farthest intersection of the
epipolar line with the image boundary. Lines that do not intersect this boundary
need not be cached.

12

The only real issue to deal with in this algorithm is how to index the cache. That is, how do we
determine that two lines are the same? There are many ways to do this; in our implementation we
compute the intersection of the epipolar line with the farthest image boundary (see Figure 7). We use this
intersection coordinate as the index to our cache. This indexing style allows us to vary the performance of
our cache by changing the resolution of our coordinate system. For example, computing intersections to
the nearest half-pixel gives a larger cache that better represents lines, but may result in fewer cache hits.
Using the nearest double-pixel results in a smaller cache and more hits, but may group lines that are too
dissimilar in the same cache location.

The line-cache algorithm is as follows:

for each pixel p = [x,y,1] in VHULL
initialize VHULL[x][y] = [depthmin, depthmax]

for each silhouette image SILi
for each cache index

initialize CACHEi[index] = EMPTY
endfor
compute fundamental matrix Fi
for each pixel p = [x,y,1] in VHULL

compute epipolar line coefficients Fip
compute line cache index = compute_index(Fip)
if(CACHEi[index] = EMPTY)

trace epipolar line in image SILi
record list of silhouette contour intersection points [pi,k]
CACHEi[index] = [pi,k]

else
[pi,k] = CACHEi[index]

endif
interval_list = []
for each pair of intersection points pi,2l and pi,2l+1

compute depthi,l,min and depthi,l,max measured w.r.t. VHULL
interval_list = interval_list ∪ [[depthi,l,min, depthi,l,max]]

endfor
VHULL[x][y] = VHULL[x][y] ∩ interval_list
endfor

endfor

Analysis
We will consider a worst case running time for the line-cache algorithm in which all cache lines are
accessed. The size of each cache is O(n), and for each cache entry a line of length O(n) is traversed,
leading to a total time of O(kn2) spent computing all cache entries. The algorithm spends time O(km2)
retrieving interval lists from the caches. Thus, the runtime is O(kn2) if n > m, and O(km2) otherwise. In
practice, we find that 90% of the cache entries are accessed, so this worst case analysis is applicable.

The line-cache algorithm gains its speed by making some tradeoffs in the quality of the resulting
visual hull. In addition to the quantization errors from the basic algorithm, the line cache algorithm
introduces errors by mapping slightly different epipolar lines to the same cache location. In practice, such
errors are small, although they may be noticeable near depth discontinuity edges.

Rendering Image-Based Visual Hulls
The rendering problem is to produce a novel image of the original object as seen from some desired view,
given an image-based visual hull of the object along with its original source views (i.e., the camera pose
and images before segmentation). Since we have already shown that the visual hull is an approximation
to the object’s true shape, it will generally be impossible to create the exact image of the object from the
new view. Thus, the goal of our rendering algorithms is to reproduce as closely as possible the true
object’s shape and color with information from the visual hull (shape) and the original camera images
(color).

We are interested in a number of additional sub-goals for our rendering algorithms. First, they should
be fast enough so that they will be applicable in our dynamic, real-time system. Second, they should offer

13

high quality imagery in the sense that rendered images should be reasonably indistinguishable from the
original camera images.

The inputs to each algorithm are assumed to be an image-based visual hull (n x n pixels), k original
camera images (n x n pixels), and a desired view. The output is an m x m pixel image as seen from the
desired view.

In all comparisons, we use the synthetic dinosaur images as inputs. The visual hull is computed from
six 256 x 256 images. We generate novel renderings from three different viewpoints to exercise the
strengths and weaknesses of the different algorithms. All six input dinosaur images are shown in Figure
8.

Figure 8. The six input dinosaur images (textures and silhouettes) used to create
and render the image-based visual hull examples in this paper.

Texture Extrusion
The texture extrusion rendering method requires the image-based visual hull to be computed from the
same viewpoint as one of the original camera images. In this special case, the pixels in the camera image
are in one-to-one correspondence with the pixels in the visual hull image. In other words, each list of
occupancy intervals in the visual hull image has a color assigned to it from the corresponding pixel in the
camera image.

This special arrangement suggests a simple rendering technique: we can draw the occupancy intervals
as seen from the new view, and we can color them with the colors assigned from the camera image. Such
a rendering technique amounts to extruding the two-dimensional color image (or texture) along viewing
rays to create a three-dimensional textured volume.

The basic requirement to use this technique is an ability to render a list of occupancy intervals from
arbitrary viewpoints. The occupancy intervals are essentially long, thin cones in space. Calculating their
projected shape exactly in the desired view would be prohibitively expensive for a real-time rendering
algorithm. However, for viewpoints that are close to the viewpoint of the visual hull, the occupancy
intervals can be approximated by simple line segments. Drawing these line segments can be done very

14

quickly since it is possible calculate the end points of the line segments efficiently.
The line segment endpoints can be incrementally computed using the three-dimensional warping

equation (Equation 1). Recall that the image-based visual hull data structure stores a list of disparity
values],,,,[max,min,max,1min,1 kk δδδδ K for each pixel]1,,[yxp = , much like a Layered Depth Image

[Shade98]. As is done when rendering Layered Depth Images, we exploit the fact that the warping
equation reduces to a simple function of disparity for a fixed pixel p :

eax δδ +=&)(2 , (2)

where pa 1
1

2 PP−= and)(21
1

2 CCe && −= −P , which are constant for a given p .

While a Layered Depth Image only stores depth values for front-facing surfaces, we store pairs of
depth values that delimit occupied regions of space. Thus, to calculate the endpoints for the line
segments, we evaulate this simple expression for each disparity pair),(maxmin δδ in the occupancy

interval list. Given the endpoints, we draw the line segments using a fast digital line drawing routine.
The complete texture extrusion algorithm is as follows:

compute H = P2
-1P1

compute e = P2
-1(C1 – C2)

for each pixel p = [x,y,1] in VHULL
compute a = Hp
for each interval [dl,min, dl,max] in VHULL[x][y]

compute line segment endpoints [xl,min, yl,min] = a + dl,mine
and [xl,max, yl,max] = a + dl,maxe using the incremental
three-dimensional warp equation (Equation 2)
draw_line(xl,min, yl,min, xl,max, yl,max, VHULL[x][y].color)

endfor
endfor

Analysis
The texture extrusion algorithm runs in time complexity O(n2m), as it draws a line of length O(m) for
each of n2 interval lists in the visual hull data structure. Although this may not seem fast, in practice it is
fast enough for real-time rendering (~ 20 frames/sec). Texture extrusion also produces reasonably good
looking images for viewpoints close to the viewpoint of the visual hull. Figure 9a demonstrates a novel
viewpoint close to the original one. The visual hull in this case was computed from the viewpoint of the
upper left-hand image in Figure 8.

Texture extrusion fails, however, when the desired viewpoint is far from the viewpoint at which the
visual hull was sampled. This failure is primarily due to two factors. First, when the viewpoint is moved
too far to one side, the extruded colors no longer approximate the true color of the object (see Figure 9b).
This problem is unavoidable, as a single camera image can not see the entire object at one time. Second,
when the viewpoint is moved very close to the object, the approximation of drawing line segments for the
occupancy intervals is no longer valid and the images “ explode” (see Figure 9c).

(a) (b) (c)

15

Figure 9. Images rendered from three novel viewpoints using texture extrusion.

Texture Projection
The texture projection algorithm extends the texture extrusion algorithm to handle a wider range of
viewpoints. It corrects the second viewpoint problem, that of incorrect colors for distant viewpoints, by
combining colors from multiple textures into a single rendering.

Texture projection is a simple extension to the texture extrusion algorithm. In texture extrusion, a
single texture is essentially projected through the volume of the visual hull. Regions of the visual hull that
are seen from the texture’s viewpoint are colored correctly, while other regions are colored incorrectly. In
texture projection, we project multiple textures onto the surface of the visual hull. Regions of the visual
hull that are not seen by one texture can be colored with information from another texture.

We implement texture projection by a small modification to the texture extrusion algorithm. Instead
of drawing each line segment with a constant color, we projectively texture map the line segment with
colors from another texture. The projective texture mapping is done using the trilinear tensor equations.
The tensor between the three views— the visual hull’s view, the texture’s view, and the desired view—
allow us to compute texture coordinates in the texture’s view given coordinates in the visual hull’s view

and the desired view. Pseudocode for the algorithm is give below. In the pseudocode [1P , 1C&] refers to

the visual hull’s view, [2P , 2C&] denotes the desired view, and [kP , kC&] is one of the texture views.

compute H = P2
-1P1

compute e = P2
-1(C1 – C2)

for each pixel p = [x,y,1] in VHULL
compute a = Hp
for each interval [dl,min, dl,max] in VHULL[x][y]

compute line segment endpoints [xl,min, yl,min] = a + dl,mine
and [xl,max, yl,max] = a + dl,maxe using the incremental
three-dimensional warp equation (Equation 1)

k = select_texture(x, y, l)
draw_line_proj_tex(x, y, xl,min, yl,min, xl,max, yl,max, P1, C1, P2, C2, Pk, Ck)

endfor
endfor

The auxiliary function draw_line_proj_tex implements projective texture mapping using the

trilinear tensor computed from [1P , 1C&], [2P , 2C&], and [kP , kC&]. The function select_texture selects

the texture to be mapped to the indicated visual hull interval. Many mappings are possible; we
implemented a particularly simple strategy in our real-time implementation. We choose the texture with
the minimum angle between the visual hull interval and the texture’s viewpoint.

Analysis
The texture projection algorithm has the same asymptotic running time as the texture extrusion algorithm,
O(n2m). However, because of the cost of the texture mapping, the hidden constant is much larger, which
makes the algorithm slower in practice. The quality of the images is generally better, and the algorithm is
useful for larger changes in the viewpoint (see Figures 10a and 10b). However, texture projection does
suffer from the same zooming problem as the texture extrusion algorithm (see Figure 10c).

16

(a) (b) (c)

Figure 10. Images rendered from three novel viewpoints using texture projection.

Ray-Casting
Both the texture extrusion and the texture projection algorithms suffer from the same problem with
viewpoints that are too close to the object: the image tends to break apart. This problem is directly
related to the fact that both algorithms are forward mapped. They transform points from the visual hull to
pixels in the desired view, and they may miss pixels along the way. Similar problems exist in other areas
of computer graphics, and they are typically solved by using a backward mapped algorithm. In such an
algorithm, pixels in the desired view are transformed to points in the visual hull. In this manner, every
pixel in the desired view can be mapped to some point in the visual hull and colored appropriately.

To implement a backward mapped algorithm for rendering visual hulls, we would like to know for
every pixel in the desired view whether or not the ray through that pixel intersects the visual hull. To
compute this, we can cast a ray for every pixel in the desired view and test it for intersections with the k
silhouette cones from the k cameras. Or, in other words, we can compute an image-based visual hull from
the desired viewpoint.

An image-based visual hull computed from the desired viewpoint effectively gives the shape of the
visual hull in the form of a depth image. However, we would like to have the proper colors along the with
shape. We can compute the colors using a bit of additional computation to back project the visual hull to
the k camera images and sample the colors. The complete algorithm is as follows:

compute VHULLd from view [Pd, Cd]

for each pixel p = [x, y, 1] in VHULLd
extract depthmin from VHULLd[x][y]
for each camera image CAMk

backproject p to pk = [xk, yk, 1] using Equation 1
colork = CAMk[xk][yk]

endfor
VHULLd[x][y] = weighted_avg(colork)

endfor

The function weighted_avg simply computes some weighted average of the colors sampled from the k
camera images. A color weight may be 0 if the camera makes no contribution to the color (e.g., it is
occluded) or 1 if the camera contributes all the color (e.g., a winner-take-all strategy). In some cases,
calculating the weights may be non-trivial. We use the winner-take-all approach in our implementation.
That is, we assign a "best" camera a weight of 1 and assign all other cameras 0 weights. We define the
best camera as the camera whose viewing ray is closest to that of the viewing direction. This strategy for
assigning camera weights ignores the occlusion problem, and cameras may be selected which actually do
not see the pixel to be colored.

17

Analysis
Due to its backward mapped nature, the ray-casting algorithm has a complexity fundamentally different
than the previous two rendering algorithms. The running time is O(km2), as the visual hull calculation is
O(km2), and the pixel coloring loop backprojects each of m2 pixels k times. This running time is
noteworthy as it is proportional to the size of the desired image and independent of the size of the camera
images (for m > n). For m = n, the algorithm is n-squared, which compares favorably to the n-cubed
forward mapped algorithms. However, the hidden constant is large, so this advantage is not realized at
typical values of n.

This algorithm is slower than the forward mapped algorithms, but potentially produces images of
higher quality (image quality and speed depend on the choice of color weighting). However, since the
runtime of this algorithm includes the explicit visual hull calculation, the comparison is slightly unfair.
Also, because it is backward mapped, problems with close range viewpoints are avoided. Ray-casting
results are shown in Figures 11a, 11b, and 11c.

(a) (b) (c)

Figure 11. Images rendered from three novel viewpoints using ray-casting.

Conclusion
We have introduced the image-based visual hull as an approximate object representation for real-time
dynamic acquired rendering systems. The needs of these systems require algorithms that allow for both
the analysis of video inputs and the synthesis of rendered outputs to occur in real-time. Our algorithms
for creating and rendering image-based visual hulls satisfy these requirements.

We have shown that the visual hull is a reasonable object representation to use in terms of accuracy
and robustness. It provides a reasonable approximation to object shape in most cases, and requires only
simple silhouette segmentation for acquisition.

We have demonstrated an efficient real-time algorithm for creating visual hulls. First, we exploit
epipolar geometry to reduce three-dimensional volume intersections to simpler two-dimensional line
intersections. Then, we use a line-caching approach to reuse previously computed results giving a further
increase in performance.

Finally, we have presented a number of algorithms for rendering views of image-based visual hulls
from novel viewpoints. The texture extrusion algorithm is fast but does not make use of all available
color information. The texture projection algorithm, while slower, does utilize color information from all
possible cameras. Both algorithms, however, suffer from a problem with viewpoints that are too close to
the object. This problem is remedied by the ray-casting algorithm, which generates an image directly
from the visual hull calculation.

18

Acknowledgements
Support for this research was provided by DARPA contract N30602-97-1-0283, and the Massachusetts
Institute of Technology’s Laboratory for Computer Science. We would also like to thank Anne McCarthy
for providing artwork.

References
[Bichsel94] Bichsel, M., “Segmenting Simply Connected Moving Objects in a Static Scene,” IEEE Transactions on Pattern

Analysis and Machine Intelligence, Vol. 16, No. 11, November 1994, pp. 1138-1142.
[Chen95] Chen, S.E., “QuickTime VR - An Image-Based Approach to Virtual Environment Navigation,” Computer Graphics

(SIGGRAPH ’95 Conference Proceedings), August 6-11, 1995, pp. 29-38.
[Curless96] Curless, B., and M. Levoy. “A Volumetric Method for Building Complex Models from Range Images,” Computer

Graphics (SIGGRAPH ’96 Conference Proceedings), August 4-9, 1996, pp. 43-54.
[Faugeras93] Faugeras, O., Three-dimensional Computer Vision: A Geometric Viewpoint, The MIT Press, Cambridge,

Massachusetts, 1993.
[Friedman97] Friedman, N., and Russell, S., “Image Segmentation in Video Sequences,” Proceedings of the Thirteenth

Conference on Uncertainty in Artificial Intelligence, 1997.
[Gortler96] Gortler, S.J., Grzeszczuk, R., Szeliski, R, and Cohen, M.F., “The Lumigraph,” Computer Graphics (SIGGRAPH’96

Conference Proceedings), August 4-9, 1996, pp. 43-54.
[Kanade97] Kanade, T., Rander, P. W., Marayanan, P. J., “Virtualized Reality: Constructing Virtual Worlds from Real Scenes,”

IEEE MultiMedia, Vol.4, No.1, Jan. - Mar. 1997, pp.34-47.
[Koenderink90] Koenderink, J. J., Solid Shape, The MIT Press, Cambridge, Massachusetts, 1990.
[Lacroute94] Lacroute, P., Levoy, M., “Fast Volume Rendering Using a Shear-Warp Factorization of the Viewing Transformation,”

Computer Graphics (SIGGRAPH ’94 Conference Proceedings), July 24-29, 1994, pp. 451-458.
[Laurentini94] Laurentini, A., ”The Visual Hull Concept for Silhouette-Based Image Understanding,” IEEE Transactions on

Pattern Analysis and Machine Intelligence, Vol. 16, No. 2, February 1994, pp. 150-162.
[Levoy96] Levoy, M. and P. Hanrahan, “Light Field Rendering,” Computer Graphics (SIGGRAPH’96 Conference

Proceedings), August 4-9, 1996, pp. 31-42.
[McMillan95] McMillan, L., and Bishop, G., “Plenoptic Modeling: An Image-Based Rendering System,” Computer Graphics

(SIGGRAPH ’95 Conference Proceedings), August 6-11, 1995, pp. 39-46.
[McMillan96] McMillan, L., “An Image-Based Approach to Three-Dimensional Computer Graphics,” Ph.D. Thesis, Department

of Computer Science, University of North Carolina at Chapel Hill, 1996.
[Pollard98] Pollard, S., and Hayes, S.,“View Synthesis by Edge Transfer with Applications to the Generation of Immersive Video

Objects,” Proceedings of the ACM Symposium on Virtual Reality Software and Technology, November 2-5,
1998, pp. 91-98.

[Potmesil87] Potmesil, M., “Generating Octree Models of 3D Objects from Their Silhouettes in a Sequence of Images,” Computer
Vision, Graphics, and Image Processing, Vol. 40, 1987, pp. 1-29.

[Seitz97] Seitz, S. M., Dyer, C. R., “Photorealistic Scene Reconstruction by Voxel Coloring,” Computer Vision and Pattern
Recognition Conference, 1997, pp. 1067-1073.

[Shade98] Shade, J., Gortler, S., He, L., and Szeliski, R., “Layered Depth Images,” Computer Graphics (SIGGRAPH ’98)
Conference Proceedings), July 19-24, 1998, pp. 231-242.

[Shashua97] Shashua, A., “Trilinear Tensor: The Fundamental Construct of Multiple-view Geometry and its Applications,”
International Workshop on Algebraic Frames For The Perception Action Cycle (AFPAC), Kiel Germany Sep. 8-
9, 1997.

[Smith96] Smith, A. R., and Blinn, J. F., “Blue Screen Matting,” Computer Graphics (SIGGRAPH ’96 Conference
Proceedings), August 4-9, 1996, pp. 21-30.

[Szeliski92] Szeliski, R., “Rapid Octree Construction from Image Sequences,” CVGIP: Image Understanding, Vol. 58, No. 1,
July 1993, pp. 23-32.

[VanHook86] Van Hook, T., “Real-time shaded NC milling display,“ Computer Graphics (SIGGRAPH ’86 Conference
Proceedings), 1986, pp. 15-20.

[Vedula98] Vedula, S., Rander, P., Saito, H., Kanade, T., “Modeling, Combining, and Rendering Dynamic Real-World Events
from Image Sequences,” 4th International Conference on Virtual Systems and Multimedia conference
proceedings, Nov. 1998.

Acquisition and Visualization of
Surface Light Fields

SIGGRAPH 2001 Course 46 Notes

Session 3:

Acquisition of Light Field Data using Hand-Held Camera

Marc Pollefeys
Katholieke Universiteit Leuven

1

Acquis ition of Light Field Data

us ing a Hand-Held Camera

Acquis ition of Light Field Data

us ing a Hand-Held Camera

Marc PollefeysMarc Pollefeys

VISICS, ESAT-PSI, K.U.Leuven

Kardinaal Mercierlaan 94

B-3001 Leuven, Belgium

OverviewOverview

•• IntroductionIntroduction

•• Acquis ition of camera motionAcquis ition of camera motion

•• Acquis ition of scene structureAcquis ition of scene structure

•• Lightfield rendering from original imagesLightfield rendering from original images

2

Visual modellingVisual modelling

Capture appearance of scene so thatCapture appearance of scene so that

new views can be rendered interactivelynew views can be rendered interactively

•• 3D 3D modelmodel

•• LightfieldLightfield � S urface lightfieldS urface lightfield

Lightfield literatureLightfield literature

•• Plenoptic functionPlenoptic function

•• Lightfield (plane)Lightfield (plane)

•• Lumigraph (some geometry)Lumigraph (some geometry)

•• Unstructered lightfield (view-dependent geometry)Unstructered lightfield (view-dependent geometry)

•• Plenoptic sampling (need for geometry)Plenoptic sampling (need for geometry)

•• Surface lightfields (full geometry)Surface lightfields (full geometry)

(Levoy&Hanrahan,S iggraph´96)

(Gortler et al.,S iggraph´96)

(Koch,ICCV´99; Heigl DAGM´99)

(Chai et al.,S iggraph´00)

(Wood et al.,S iggraph´00)

(Adelson&Bergen´91; McM illan&Bishop,S iggraph´95)

3

GoalGoal

Acquis ition of lightfield with hand-held cameraAcquis ition of lightfield with hand-held camera

Required:Required:

•• Obtain motion of the cameraObtain motion of the camera

•• Obtain 3D structure of the sceneObtain 3D structure of the scene

Des irable:Des irable:

•• Obtain calibration from imagesObtain calibration from images

•• Automatic process ingAutomatic process ing

Example: desk sequenceExample: desk sequence

186 images recorded with hand-held camera186 images recorded with hand-held camera

4

3D model vs . lightfield3D model vs . lightfield

OverviewOverview

•• IntroductionIntroduction

•• Acquis ition of camera motionAcquis ition of camera motion

• Relating images

• S tructure and motion recovery

•• Acquis ition of scene structureAcquis ition of scene structure

•• Lightfield rendering from original imagesLightfield rendering from original images

5

Feature pointsFeature points

•• Extract feature points to relate imagesExtract feature points to relate images

•• Required properties:Required properties:

• Well-defined

• S table across views

Feature pointsFeature points

homogeneous

edge

corner

� � � �dxdyyxw
y

I

x

I

W
y

I

x

I

,

�

�

�

�

�

�

�

�

�� �
�

�
�
�

�
�M

Use local maxima of M

(e.g.Harris&S tephens´88; S hi&Tomasí 94)

��� M
T

SSD

Approximate S um-of-S quared-Differences for small displacements

6

Feature points : exampleFeature points : example

•• Select s trongest features Select s trongest features (e.g. 1000/image)

• Per tile

• overall

Feature matchingFeature matching

Evaluate Sum-of-Square-Differences (SS D) for featuresEvaluate Sum-of-Square-Differences (SS D) for features

in local neighborhoodin local neighborhood

Keep mutual bes t matchesKeep mutual bes t matches

S till many wrong matches !S till many wrong matches !

� � � � � �
10101010

,,´´, e.g. hhww
yyxxyx ������

7

Epipolar geometryEpipolar geometry

C1

C2

l2

�

l1

e1

e2

m1

m2

0m m
1

T

2
�F

12
m l F~

Fundamental matrix

(3x3 rank 2 matrix)

• Computable from

corresponding points

• S implifies matching

• Allows to detect wrong

matches

• Related to calibration

Underlying structure in matches for rigid scenes

Epipolar geometry: exampleEpipolar geometry: example

8

Computing the epipolar geometryComputing the epipolar geometry

•• GeneralGeneral 0m m' �F
T

� � 0 1 �fyxy´yy´xy´x´yx´xx´

� � 0λdet ��
ba

FF

� � � �� �� �

22

m´,mm´,mminarg T
FF

F

DD

� � 0 1 �fyxy´yy´xy´x´yx´xx´

(Longuet-Higgins,’81;Hartley,‘95)

•• Optimal (non-linear) Optimal (non-linear)

•• 7 correspondences (linear+cubic) 7 correspondences (linear+cubic)

•• 8 or more correspondences (linear) 8 or more correspondences (linear)

(rank 2)

(image distances)

Robust computation: RANS ACRobust computation: RANS AC

S tep 1. Compute set of potential matchesS tep 1. Compute set of potential matches

S tep 2. While P(#inliers ,#samples)<95% doS tep 2. While P(#inliers ,#samples)<95% do

• S elect minimal sample (7 matches)

• Compute solution(s) for F

• Determine inliers

S tep 3. Refine F based on all inliersS tep 3. Refine F based on all inliers

S tep 4. Look for additional matchesS tep 4. Look for additional matches

S tep 5. Refine F based on all correct matchesS tep 5. Refine F based on all correct matches

(Fishler & Boles,‘81)

9

S tructure and motion recoveryS tructure and motion recovery

Sequential approachSequential approach

•• Initialize motion from two imagesInitialize motion from two images

•• Initialize s tructureInitialize s tructure

•• For each additional viewFor each additional view

• Determine pose of camera

• Refine and extend structure

•• Refine structure and motion solutionRefine structure and motion solution

Camera modelCamera model

C1 M

center of projection

image plane

3D point
m1

image point

L1

line of sight

Perspective projection

M~m P

�
�
�
�

�

�

�
�
�
�

�

�

�
�
�

�

�

�
�
�

�

�

�

�
�
�

�

�

�
�
�

�

�

�

1
1

34333231

24232221

14131211

Z

Y

X

pppp

pppp

pppp

y

x

projection matrix

10

Initial projective camera motionInitial projective camera motion

Choose P and P´compatible with FChoose P and P´compatible with F

Reconstruction up to projective ambiguity
(Faugeras´92,Hartley´92)

� �

� �´ee´ae´´

0
333

T
���

�
�

FP

IP

Initializing projective s tructureInitializing projective s tructure

Reconstruct matches in projective frame

by minimizing the reprojection error

� � � �2
22

2

11
,, MPmMPm DD �

Triangulation

(see Hartley&S turm,CVIU´97)

11

Projective pose es timationProjective pose es timation

Infere 2D-3D matches from 2D-2D matchesInfere 2D-3D matches from 2D-2D matches

Compute pose from (RANSAC,6pts)Compute pose from (RANSAC,6pts)

F

Mm P~

0
MM0

M0M
��

�

�
�
�

�
p

y

x

TT

TT

M

m

Relating to more viewsRelating to more views

Needed to avoid re-instantiating same 3D pointsNeeded to avoid re-instantiating same 3D points

Before initializing new pointsBefore initializing new points

Match to other Match to other closeclose view view

Problem: find close views
in projective frame

12

Image-based dis tance measureImage-based dis tance measure

Planar homographyPlanar homography

Plane-based image to image transformation

m m' H~

Smallest median res idual on planar homographySmallest median res idual on planar homography

gives measure of dis tance between viewpointgives measure of dis tance between viewpoint

� �� �m'm,median HDR �

9.8im/pt

4.8im/pt

64 images

64 images

3
7

9
2
 p

o
in

ts

2
1

7
0
 p

o
in

ts

Non-sequential image

collection:

example

Non-sequential image

collection:

example

13

Refining and extending s tructureRefining and extending s tructure

Refining s tructureRefining s tructure

Extending s tructureExtending s tructure

Triangulation

0M
PP

PP

13

13 ��
�

�
�
�

�

�

�

y

x

M
~

P

1

3

(Iterative linear)

(Hartley&S turm,CVIU´97)

Refining s tructure and motionRefining s tructure and motion

Bundle adjustment Bundle adjustment (S lama´80;Triggs et aĺ 00)

� �� �
2

1 1M,

M,mminarg ��
� �

m

k

n

i

ikki
D

ik

P
P

14

S tructure and motion: overviewS tructure and motion: overview
•• Initialize the structure and motion recoveryInitialize the structure and motion recovery

• Compute two-view geometry

• S et up the initial frame

• Reconstruct the initial structure

•• For every additional viewFor every additional view

• Compute two-view geometry

• Infer matches to the structure and compute the camera pose

• Refine the existing structure

• (optional) For already reconstructed views which are close

• Compute two-view geometry with actual view

• Infer additional matches to the structure

R efine the compute camera pose based on all available matches

•• Refine structure and motion through bundle adjus tmentRefine structure and motion through bundle adjus tment

Projective to metricProjective to metric

Euclidean projection matrix factorizationEuclidean projection matrix factorization

Use constraints on Use constraints on KK to to

identify metric reference frame identify metric reference frame ��������**

Transform Transform ��������** to canonical pos ition to canonical pos ition

T
PP

**
~ω �

T
KK~ω

*

� �tTT
RRKP ��

�
�
�

�

�

�
�
�

�

�

�

1

0

2

2

h

w

f

f

Ktypically,

�
�
�

�

�

�
�
�

�

�

�

1

0ˆ

00ˆ

ˆ f

f

Knormalized,

1ˆ
�f

15

Projective to metric (2)Projective to metric (2)

Linear methodLinear method
� � � �

� �
� �
� � 0Ω

0Ω

0Ω

0ΩΩ

23

T

13

T

12

T

22

T

11

T

�

�

�

��

�

�

�

��

PP

PP

PP

PPPP

(Pollefeys et al.,ICCV´98/IJCV´99)

�
�
�

�

�

�
�
�

�

�

��	

100

0ˆ0

00ˆ

ω
2

2

** f

f
T

PP

1ˆ
�f � � � �

� � � � 0ΩΩ

0ΩΩ

33

T

22

T

33

T

11

T

��

��

��

��

PPPP

PPPP

(only rough aproximation, but still usefull to avoid degenerate configurations)

(relatively accurate for most cameras)

10

1

10

1

Projective to metric (3)Projective to metric (3)

Non-linearNon-linear

Metric bundle adjustmentMetric bundle adjustment

� �� �
� �

� �� �
� �

� �� �
� �

� �� �
� �

� �� �
� �� �

�

�
�
�

� ����
�����

�
�

���

i
s

s

c

c

c

c

r

r

f

f

y

y

x

x

2

2
1

2

2
1

2

2
1

2

2
1

2

2
1

log

log

log

log

log

log

log

log

log

log
minarg

PTPTPTPTPT

T

� �� �
2

1 1M,

M,mminarg ��
� �

m

k

n

i

ikki
D

ik

P
P

,...f� Indication of expected range for intrinsics

16

S tructure and motion: exampleS tructure and motion: example

190 images

7
0
0
0
p
o
in
ts

Input sequenceInput sequence

Viewpoint surface mesh calibrationViewpoint surface mesh calibration

OverviewOverview

•• IntroductionIntroduction

•• Acquis ition of camera motionAcquis ition of camera motion

•• Acquis ition of scene structureAcquis ition of scene structure

• Dense stereo matching

• Multi-view depth estimation

•• Lightfield rendering from original imagesLightfield rendering from original images

17

Image rectificationImage rectification

Resample image to s implify matchingResample image to s implify matching

processprocess

(Pollefeys et al.ICCV´99)

S tereo matchingS tereo matching

•• Ordering preservedOrdering preserved

•• Unique matchUnique match

•• Disparity limitDisparity limit

•• Disparity gradient limit (except at discontinuities)Disparity gradient limit (except at discontinuities)

•• Epipolar constraint Epipolar constraint

18

S tereo matching (2)S tereo matching (2)

Optimal path

(dynamic programming

trade-off match/discontinuities)

Similarity measure

(SSD or NCC)

(Cox et al.CVGIP´96,Koch´96,Falkenhagen´97)

Disparity mapDisparity map

(x´,y´)=(x+D(x,y),y)

image I(x,y) image I´(x´,y´)Disparity map D(x,y)

19

Point trans ferPoint trans fer

Multi-view depth estimationMulti-view depth estimation

Compute depth for everyCompute depth for every

pixel of reference imagepixel of reference image
• Triangulation
• Use multiple views
• Up- and down sequence
• Use Kalman filter

20

Depth mapDepth map

Distance between surface
and projection center

OverviewOverview

•• IntroductionIntroduction

•• Acquis ition of camera motionAcquis ition of camera motion

•• Acquis ition of scene structureAcquis ition of scene structure

•• Lightfield rendering from original imagesLightfield rendering from original images

• Fixed plane approximation

• View-dependent geometry approximation

21

Lightfield renderingLightfield rendering

focal surface

Approximate light rays

by interpolating from closest light rays in lightfield

viewpoint surface

• Projection of viewpoint surface in virtual camera
 determines which views to get lightrays from

• Transfer from images to virtual views over focal surface
 determine which pixels to use

Unstructured lightfieldUnstructured lightfield

originaloriginal viewpoint viewpointss

NovelNovel

viewview

For every pixel, combine For every pixel, combine best best rays from rays from closestclosest views views

(Koch et al.,ICC V´99; Heigl et al.,DAGM´99)

Focal surfaceFocal surface

22

Example: Desk LightfieldExample: Desk Lightfield

Planar focal Planar focal surfacesurface

(shadow artefacts)

View-dependent geometry

approximation

View-dependent geometry

approximation

originaloriginal viewpoint viewpointss

object surfaceobject surface

View-dependent surfaceView-dependent surface

approximationapproximation

NovelNovel

viewview

objectobject

depth mapsdepth maps

23

Adaptation of geometry withAdaptation of geometry with

the rendering viewpointthe rendering viewpoint

View-dependent geometry

approximation

View-dependent geometry

approximation

Geometry subdivis ionGeometry subdivis ion

originaloriginal viewpoint viewpointss

object surfaceobject surface

View-dependent surfaceView-dependent surface

approximationapproximation

NovelNovel

viewview

objectobject

depth mapsdepth maps

24

Viewpoint-geometry without subdivis ionViewpoint-geometry without subdivis ion

4 subdivis ions4 subdivis ions

22 subdivis ionssubdivis ions

1 subdivis ion of viewpoint1 subdivis ion of viewpoint

surfacesurface

S calable geometric

approximation

S calable geometric

approximation

Example: Desk lightfieldExample: Desk lightfield

Planar focal surfacePlanar focal surface View-dependentView-dependent

geometry approximationgeometry approximation

(2 subdivisions)

25

Conclus ionConclus ion

•• Lightfield data captured with hand-held cameraLightfield data captured with hand-held camera

• Camera motion and calibration

• S cene geometry

• Automatic processing

•• Unstructured lightfieldUnstructured lightfield

• Direct rendering from original images

• Rendering with scalable, view-dependent geometry

•• Other types of visual models can also beOther types of visual models can also be
obtainedobtained

More info…More info…

Marc PollefeysMarc Pollefeys

Marc.Pollefeys@ esat.kuleuven.ac.be

http://www.esat.kuleuven.ac.be/~pollefey/

VISICS, ESAT-PSI, K.U.Leuven

Kardinaal Mercierlaan 94

B-3001 Leuven, Belgium

Calibration of Hand-held CameraSequencesfor PlenopticModeling

R. Koch
�

, M. Pollefeys
�
, B. Heigl

�
, L. VanGool

�
, H. Niemann

�
MultimediaInformationProcessing,Inst. for ComputerScience,Universityof Kiel, Germany

�
ESAT-PSI,KatholiekeUniversiteitLeuven,Belgium

�
Lehrstuhlfür MustererkennungUniversiẗatErlangen–N̈urnberg, Germany

�

Abstract

In this contribution we focuson the calibration of very
long image sequencesfrom a hand-heldcamera that sam-
plestheviewingsphereof a scene. View spheresamplingis
important for plenoptic(image-based)modelingthat cap-
turestheappearanceof a sceneby storingimagesfromall
possibledirections. Theplenopticapproach is appealing
sinceit allows in principle fast scenerenderingof scenes
with complex geometryandsurfacereflections,withoutthe
needfor an explicit geometricalscenemodel. However,
the acquired imageshaveto be calibratedbefore plenop-
tic modelingcan be used,and current approachesmostly
usepre-calibratedacquisitionsystems.Thislimits thegen-
erality of theapproach.

We proposea way out by usingan uncalibratedhand-
heldcamera only. Theimage sequenceis acquiredby sim-
ply wavingthe camera aroundthe sceneobjects,creating
a zigzag scanpathover theviewing sphere. We extendthe
sequentialcamera tracking of an existing structure-from-
motion approach to a simultaneousmulti-viewpoint cam-
era tracking. A meshof camera viewpoints is computed
that approximatesthe view sphere. The viewpoint mesh
is then usedfor view-dependentrendering. Novel views
are generatedby piecewisemappingand interpolatingthe
new image from the nearest viewpointsaccording to the
viewpoint mesh. Local surfacegeometrycan further en-
hancetheinterpolationprocess.Extensiveexperimentswith
groundtruth dataandhand-heldsequencesconfirmtheper-
formanceof our approach1.

1. Intr oduction

Thereis an ongoingdebatein the computervision and
graphicscommunitybetweengeometry-basedand image-
basedscenereconstructionandvisualizationmethods.Both
methodsaimatrealisticcaptureandfastvisualizationof 3D
scenesfrom imagesequences.

1Work performedwhile at K.U. Leuven

Image-basedrenderingapproacheslike plenopticmod-
eling [13], lightfield rendering[12] andthe lumigraph[6]
havelatelyreceivedalot of attention,sincethey cancapture
theappearanceof a3D scenefrom imagesonly, withoutthe
explicit useof 3D geometry. Thusonemaybeableto cap-
ture objectswith very complex geometrythat can not be
modeledotherwise.Basicallyonecachesall possibleviews
of thesceneandretrievesthemduringview rendering.

Geometric3Dmodelingapproachesgenerateexplicit 3D
scenegeometryandcapturescenedetailsmostlyon polyg-
onal (triangular)surface meshes. A limited set of cam-
era views of the sceneis sufficient to reconstructthe 3D
scene. Texture mappingadds the necessaryfidelity for
photo-realisticrenderingto the object surface. Recently
progresshasbeenreportedon calibratingandreconstruct-
ing scenesfrom generalhand-heldcamerasequenceswith
aStructure fromMotionapproach[5, 14].

The problemcommonto both approachesis the need
to calibratethe camerasequence.Typically oneusescal-
ibratedcamerarigsmountedonaspecialacquisitiondevice
like a robot [12], or a dedicatedcalibrationpatternis used
to facilitatecalibration[6]. In the caseof lightfield gen-
erationfrom a hand-heldcamera,one typically generates
very many (hundreds)of images,but with a specificdistri-
bution of thecameraviewpoints.Sincewe wantto capture
the appearanceof the object from all sides,we will try to
sampletheviewing sphere,thusgeneratinga meshof view
points. To fully exploit hand-heldsequences,we will also
have to deviate from the restrictedlightfield datastructure
andadopta moreflexible renderingdatastructurebasedon
theviewpointmesh.

In thiscontributionwetackletheproblemof cameracal-
ibration from very many imagesunderspecialconsidera-
tion of denseviewspheresampling.Thenecessarycamera
calibrationand local depthestimatesare obtainedwith a
structurefrom motion approach.We will first give a brief
overview of existing image-basedrenderingand geomet-
ric reconstructiontechniques.We will then focus on the
calibrationproblemfor plenopticsequences.Finally we

will describethe image-basedrenderingapproachthat is
adaptedto ourcalibration.Experimentsoncalibration,geo-
metricapproximationandimage-basedrenderingconclude
thiscontribution.

2. Previouswork

Plenopticmodelingdescribestheappearanceof a scene
throughall light rays(2-D) thatareemittedfrom every3-D
scenepoint, generatinga 5D-radiancefunction [13]. Re-
centlytwo equivalentrealizationsof theplenopticfunction
wereproposedin form of the lightfield [12], andthe lumi-
graph[6]. They handlethe casewhenwe observe an ob-
ject surfacein free space,hencethe plenopticfunction is
reducedto four dimensions(light raysareemittedfrom the
2-dimensionalsurfacein all possibledirections).

Lightfield data representation. The original 4-D light-
field datastructureemploys a two-planeparameterization.
Eachlight raypassesthroughtwo parallelplaneswith plane
coordinates

�����	�	

and

�������

. Thusthe ray is uniquelyde-

scribedby the 4-tuple
�����	�������	�	

. The
�������	

-planeis the
viewpointplanein whichall camerafocalpointsareplaced
on regular gridpoints. The

�������

-planeis the focal plane

whereall cameraimageplanesareplacedwith regularpixel
spacing.Theopticalaxesof all camerasareperpendicular
to theplanes.This datastructurecoversonesideof anob-
ject. For a full lightfield we would needto constructsix
suchdatastructuresona cubearoundtheobject.

New views canbe renderedfrom this datastructureby
placinga virtual cameraon anarbitraryview point andin-
tersectingthe viewing rays with the planesat

���������	���	��

.

This, however, applies only if the viewing ray passes
throughoriginal cameraview points and pixel positions.
For rayspassingin betweenthe

�����	�	

and

�����	��

grid co-

ordinatesan interpolationis appliedthat will degradethe
renderingqualitydependingon thescenegeometry. In fact,
the lightfield containsan implicit geometricalassumption:
Thescenegeometryis planarandcoincideswith the focal
plane.Deviationof thescenegeometryfrom thefocalplane
causesimagewarping.

The Lumigraph. The discussionabove revealstwo ma-
jor problemswhenacquiringlightfieldsfrom realimagese-
quences.First, the needto calibratethe cameraposesin
orderto constructtheviewpointplane,andsecondtheesti-
mationof localdepthmapsfor view interpolation.Theorig-
inal lumigraphapproach[6] alreadytacklesbothproblems.
A calibrationof the camerais obtainedby incorporatinga
backgroundwith aknowncalibrationpatterninto thescene.
Theknown specificmarkerson thebackgroundareusedto
obtaincameraparameterand poseestimation[18]. They
provide no meansto calibratethe imagesfrom imagedata

only. For depthintegrationtheobjectgeometryis approxi-
matedby constructinga visualhull from theobjectsilhou-
ettes. The hull approximatesthe global surfacegeometry
but can not dealwith local concavities. Furthermore,the
silhouetteapproachis not feasiblefor generalscenesand
viewing conditionssincea specificbackgroundis needed.
Thisapproachis thereforeconfinedto laboratoryconditions
anddoesnotprovideageneralsolutionfor arbitraryscenes.
If we want to utilize the image-basedapproachfor general
viewingconditionsweneedtoobtainthecameracalibration
andto estimatelocaldepthfor view interpolation.

Structur e-From-Motion. The problemof simultaneous
cameracalibration and depth estimationfrom image se-
quenceshasbeenaddressedfor quitesometimein thecom-
putervisioncommunity. In theuncalibratedcaseall param-
eters,cameraposeandintrinsiccalibrationaswell asthe3D
scenestructurehave to beestimatedfrom the2D imagese-
quencealone.FaugerasandHartley first demonstratedhow
to obtainuncalibratedprojective reconstructionsfrom im-
agesequencesalone[3, 8]. Sincethen,researcherstried to
find ways to upgradethesereconstructionsto metric (i.e.
Euclideanbut unknown scale, see[4, 17]). Recentlya
methodwasdescribedto obtainmetric reconstructionsfor
fully uncalibratedsequencesevenfor changingcamerapa-
rameterswith methodsof self-calibration[14]. For dense
structurerecovery a stereomatchingtechniqueis applied
betweenimagepairsof thesequenceto obtainadensedepth
mapfor eachviewpoint. Fromthis depthmapa triangular
surfacewire-frameis constructedandtexturemappingfrom
the imageis appliedto obtainrealisticsurfacemodels[9].
The approachallows metric surfacereconstructionin a 3-
stepapproach:

1. cameracalibrationis obtainedby trackingof feature
pointsover theimagesequence,

2. densedepthmapsfor all view points are computed
fromcorrespondencesbetweenadjacentimagepairsof
thesequence,

3. a 3-D surfacemeshapproximatesthe geometry, and
surfacetextureis mappedontoit to enhancethevisual
appearance.

3. Calibration of viewpoint meshes

In this contribution we proposeto extend the sequen-
tial structure-from-motionapproachto thecalibrationof the
viewpoint sphere.Plenopticmodelingamountsto a dense
samplingof the viewing spherethat surroundsthe object.
Onecaninterpretthe differentcameraviewpointsassam-
plesof a generalizedsurfacewhich we will call the view-
point surface. It canbeapproximatedasa triangularview-
point meshwith camerapositionsasnodes.In thespecific

2

caseof lightfieldsthisviewing surfaceis simplyaplaneand
thesamplingis theregularcameragrid. If a programmable
robotwith a cameraarmis athand,onecaneasilyprogram
all desiredviews andrecorda calibratedimagesequence.
For sequencesfrom a hand-heldvideocamerahowever we
obtain a generalsurfacewith possiblecomplex geometry
andnon-uniformsampling.To generatetheviewpointswith
asimplevideocamera,onemightwantto sweepthecamera
aroundtheobject,thuscreatinga zig-zagscanningpathon
the viewing surface. The problemthat ariseshereis that
typically very long imagesequencesof several hundreds
of views have to be processed.If we processthe images
strictly in sequentialorder as they come from the video
stream,then imageshave to be tracked oneby one. One
canthink of walking alongthe pathof cameraviewpoints
givenby the recordingframeindex. This maycauseerror
accumulationin viewpointtracking,becauseobjectfeatures
aretypically seenonly in afew imagesandwill belostafter
someframesdueto occlusionandmismatching.It would
thereforebehighly desirableto detectthepresenceof apre-
viously trackedbut lost featureandto tie it to thenew im-
age.

Thecaseof disappearingandreappearingfeaturesisvery
commonin viewpointsurfacescanning.Sincewesweepthe
camerain azigzagpathover theviewpointsurface,wewill
generaterows andcolumnsof an irregular meshof view-
points.Evenif theviewpointsarefar apartin thesequence
frameindex they maybegeometricallycloseon theview-
point surface.We shouldthereforeexploit theproximity of
cameraviewpointsirrespectively of their frameindex.

3.1. Sequentialcameratracking

The basic tool for the viewpoint tracking is the two-
view matcher. Imageintensity featuresare detectedwith
the Harris cornerdetector[7] and have to be matchedbe-
tweenthetwo images��� � ��� of theview points ��� � ��� . Here
werely onarobustcomputationof theFundamentalmatrix �!� with the RANSAC (RANdom SAmpling Consensus)
method[16]. A minimumsetof 7 featurescorrespondences
is picked from a large list of potential imagematchesto
computea specific

. For this particular

the supportis

computedfrom theotherpotentialmatches.Thisprocedure
is repeatedrandomlyto obtainthemostlikely

 �!� with best
supportin featurecorrespondence.

Thenext stepafterestablishmentof

is thecomputation
of the "$#&% cameraprojectionmatrices� � and � � . Thefun-
damentalmatrixalonedoesnotsufficeto fully computethe
projectionmatrices.In abootstrapstepfor thefirst two im-
ageswe follow theapproachby Beardsley et al. [1]. Since
thecameracalibrationmatrix ' is unknown apriori weas-
sumea approximate (' to start with. The first camerais
thensetto �)+*,('.- ��/ 021 to coincidewith theworld coordi-

natesystem,andthesecondcamera��3 canbederivedfrom
theepipole4 and

as��35*6('87�- 4�1:9 <; 4>=�?@/ A24CB with - 4C1!9+*EDGF H�I�J I�KI�J F H�IMLH�I�K IML F

N
��3 is definedup to a global scaler and the unknown

planeOQP RTS , encodedin = ? (seealso[15]). Thuswecanonly
obtainaprojectivereconstruction.Thevector = ? shouldbe
chosensuchthat the left "U#V" matrix of ��� bestapprox-
imatesan orthonormalrotationmatrix. The scale A is set
suchthat thebaselinelengthbetweenthefirst two cameras
is unity. ' and = ? will bedeterminedlaterduringcamera
self-calibration.

Oncewe have obtainedthe projectionmatriceswe can
triangulatethe correspondingimagefeaturesto obtainthe
correspondingprojective 3D object features. The object
pointsaredeterminedsuchthat their reprojectionerror in
theimagesis minimized.In additionwe computethepoint
uncertaintycovarianceto keeptrack of measurementun-
certainties.The 3D objectpointsserve asthe memoryfor
consistentcameratracking,andit is desirableto track the
projectionof the3D pointsthroughasmany imagesaspos-
sible.

Eachnew view of thesequenceis usedto refinetheini-
tial reconstructionandto determinethe cameraviewpoint.
Here we rely on the fact that two adjacentframesof the
sequenceare taken from nearbyview points,hencemany
objectfeatureswill bevisible in bothviews. Theprocedure
for addinga new frameis much like the bootstrapphase.
Robustmatchingof

 ��W �YX�3 betweenthecurrentandthenext
frame of the sequencerelatesthe 2D imagefeaturesbe-
tweenviews � � and � �ZX3 . Sincewe have also the 2D/3D
relationshipbetweenimageandobjectfeaturesfor view � � ,
wecantransfertheobjectfeaturesto view � �YX�3 aswell. We
canthereforethink of the3D featuresasself-inducedcali-
brationpatternanddirectly solve for thecameraprojection
matrixfrom theknown2D/3Dcorrespondencein view �T�ZX3
with a robust (RANSAC) computationof ���YX3 . In a last
stepwe updatetheexisting3D structureby minimizing the
resultingfeaturereprojectionerrorin all images.A Kalman
filter is appliedfor each3D point andits positionandco-
varianceareupdatedaccordingly. Unreliablefeaturesand
outliersareremoved,andnewly foundfeaturesareadded.

3.2. Viewpoint meshweaving

Thesequentialapproachasdescribedaboveyieldsgood
resultsfor thetrackingof shortsequences.New featuresare
addedin eachimageandthe existing featuresaretracked
throughoutthe sequence.Due to sceneocclusionsandin-
evitable measurementoutliers,however, the featuresmay
be lost or wrongly initialized, leading to erroneousesti-
matesandultimatelytrackingfailure. Sofar severalstrate-
gieshave beendevelopedto avoid this situation. Recently

3

Fitzgibbonet al. [5] addressedthis problemwith a hierar-
chical matchingschemethat matchespairs, triplets, short
subsequencesand finally full sequences.However, they
track along the linear camerapath only and do not con-
sidertheextendedrelationshipin a meshof viewpoints. By
exploiting the topology of the cameraviewpoint distribu-
tion on theviewpoint surfacewe canextendthesequential
trackingto a simultaneousmatchingof neighboringview-
points. The viewpoint meshis describedby the nodege-
ometry(cameraviewpoints)andthetopology(whichview-
pointsarenearestneighbors).

Our goal is to recover topology and geometryof the
viewpointsurface.Westartsequentiallythroughthecamera
sequenceasdescribedabove. This procedurecomputesthe
geometryof thecamerafrom theconnectivity with thepre-
viousviewpoint. To establishtheconnectivity to all nearest
viewpointswehave now two possibilities:Look-aheadand
backtracking.For look-aheadonecomputesimagerelation-
shipsbetweenthecurrentandall futureframes.Suchanap-
proachhasbeendevelopedfor collectionsof images[10]. It
hastheadvantagethat it canhandleall imagesin parallel,
but thecomputationalcostsarequitehigh. For backtrack-
ing thesituationis morefortunate,sincefor previouscam-
eraswehavealreadycalibratedtheirposition.It is therefore
easyto computethegeometricaldistancebetweenthecur-
rentandall previouscamerasandto find thenearestview-
points. Of courseonehasto accountfor the non-uniform
viewpoint distribution and to selectonly viewpoints that
give additionalinformation. We have adopteda schemeto
divide the viewing surfaceinto angularsectorsaroundthe
currentviewpointandto selectthenearestcamerasthatare
most evenly distributed aroundthe currentposition. The
searchstrategy is visualizedin fig. 1. Thecameraproduces
a pathwhosepositionshave beentracked up to viewpoint[�\^]

already, resultingin ameshof viewpoints(filled dots).
The new viewpoint

[
is estimatedfrom thoseviewpoints

that are inside the shadedpart of the sphere.The cut-out
sectionavoids unnecessaryevaluationof nearbycameras[�_] � [�\a` ��bZbYb

. Theradiusof thesearchsphereis adapted
to thedistancebetweenthelasttwo viewpoints.

Oncewe have found the local topology to the nearest
view pointswecanupdateourcurrentpositionbyadditional

viewpoint surface

t

s

backtracking

camera path

tracked viewpoint3 ... viewpoints21

i-1
look-ahead

search range

Figure 1. Search strategy to determine the topol-
ogy between the viewpoints.

matching. In fact, eachconnectingedgeof our viewpoint
meshallowsthecomputationof

 �!� betweentheviewpoints[
and c . More important,sincewe arenow matchingwith

imagesway back in the sequence,we can couplethe 3D
structure muchmoreeffectively to imagematches.Thus,
a 3D featurelives much longer and is seenin more im-
agesthan with simple sequentialtracking. In addition to
thecouplingof old featureswe obtaina muchmorestable
estimatefor the single viewpoint as well. Eachimageis
now matchedwith (typically 3-4) imagesin differentspa-
tial directionswith reducestherisk of critical or degenerate
situations.

4. Rendering fr om the viewpoint mesh

For image-basedrendering,virtual cameraviews areto
be reconstructedfrom the setof calibratedviews. The lu-
migraphapproach[6] synthesizesa regularviewpoint grid
through rebinning from the estimatedirregular cameras.
Becauseof interpolatingthe grid from the original data,
information is lost andblurring effectsoccur. To prevent
the disadvantagesof the rebinningstep,we renderviews
directly from the originally recordedimages. In the sim-
plest way this is achieved by projectingall imagesonto
a commonplaneof “meangeometry”by a 2D projective
mapping.Having a full triangulationof theviewpoint sur-
face,weprojectthismeshinto thevirtual camera.For each
triangleof the mesh,only the views that spanthe triangle
are contributing to the color valuesinside. Eachtriangle
actsas a window throughwhich the threecorresponding
mappedtexturesareseenin thevirtual camera.Thetextures
areoverlappedby applyingalphablendingwith barycentric
weightsdependingon thedistanceto thecorrespondingtri-
anglecorner.

Combining images and geometry. The renderingap-
proachcan be refinedusing more detailedgeometricin-
formation. Dependingon the virtual cameraposition, a
planeof meangeometryis assignedadaptively to eachim-
agetriplet which forms a triangle. Adaptive to the sizeof
eachtriangleandthecomplexity of geometry, furthersub-
divisionof eachtrianglecanimprovetheaccuracy of there-
construction.For thisuseof geometry, localdepthmapsare
sufficient. Theapproachis describedmorein depthin [11].
As therenderingis a2D projectivemapping,it canbedone
in real time usingthe texture mappingandalphablending
facilitiesof graphicshardware.

5. Experimental results

To evaluateour approach,we recordeda testsequence
with known groundtruth from a calibratedrobotarm. The
cameraismountedonthearmof arobotof typeSCORBOT-
ER VII. Thepositionof its gripperarmis known from the

4

Figure 2. Image 1 and 64 of the 8 # 8 original camera
images of the sphere sequence .

anglesof the 5 axesandthedimensionsof thearm. Opti-
cal calibrationmethodswereappliedto determinetheeye-
handcalibrationof the cameraw.r.t. the gripperarm. We
achieve a meanabsolutepositioningerror of 4.22 mm or
0.17 degrees,respectively [2]. The repetitionerror of the
robotis 0.2mm and0.03degrees,respectively. Becauseof
thelimited sizeof therobot,wearerestrictedto sceneswith
maximalsizeof about100mmin diameter.

For the ground truth experimentthe robot sampledad # d sphericalviewing grid with a radiusof 230mm. The
viewing positionsenclosedamaximumangleof 45degrees
whichgivesanextensionof thesphericalviewpointsurface
patchof 180# 180mme . Thesceneconsistsof a cactusand
somemetallic partson a pieceof rough white wallpaper.
Two of theoriginal imagesareshown in fig. 2. Pleasenote
theocclusionsandthereflectionsandilluminationchanges
in theimages.

We comparedthe viewpoint meshweaving algorithm
with the sequentialtracking and with ground truth data.
Fig. 3 shows the camerapath and connectivity for the
sequentialtracking (left) and viewpoint weaving (right).
Weaving generatesthetopologicalnetwork thattightly con-
nectsall neighboringviews. On averageeachnodewas
linkedto 3.4connections.

The graphin fig. 4 illustratesvery clearly the survival
of 3D points.A singlepointmaybetrackedthroughoutthe

Figure 3. Left: Camera trac k and view points for se-
quential trac king. Right: Camera topology mesh
and view points for viewpoint mesh weaving. The
cameras are visualiz ed as pyramids, the black dots
displa y some of the trac ked 3D points.

10 20 30 40 50 60

500

1000

1500

2000

2500

3000

3500

10 20 30 40 50 60

200

400

600

800

1000

1200

1400

1600

1800

2000

Figure 4. Distrib ution of trac ked 3D points (ver ti-
cal) over the images (horizontal). Left: Sequential
trac king. Right: viewpoint mesh weaving. Please
note the specific 2D pattern in the right graph that
indicates how a trac ked point is lost and found
back thr oughout the sequence .

sequencebut is lostoccasionallydueto occlusion.However
asthecamerapassesnearto a previouspositionin thenext
sweepit is revivedandhencetrackedagain.This resultsin
fewer3D points(# Pts)whicharetrackedin moreimages(#
Im/Pts). Somestatisticsof the trackingaresummarizedin
table1. A minimumamountof 3 imagesis requiredbefore
a featureis kept as3D point. For viewpoint weaving, 3D
pointsareusuallytracked in the doubleamountof images
ascomparedto sequentialtracking,andtheaveragenumber
of imagematches(#Pts/Im)is increased.Importantis also
thatthenumberof pointsthataretrackedin 3 imagesonly (#
Min Pts)dropssharply. Thesepointsareusuallyunreliable
andshouldbediscarded.

A quantitativeevaluationof thetrackingwasperformed
by comparingthe estimatedmetric cameraposewith the
known Euclideanrobotpositions.We anticipatetwo types
of errors: 1) a stochasticmeasurementnoiseon the cam-
eraposition,and2) a systematicerror dueto a remaining
projective skew from imperfectself-calibration.For com-
parisonwetransformthemeasuredmetriccamerapositions
into the Euclideanrobot coordinateframe. With a pro-
jective transformationwe can eliminatethe skew and es-
timatethemeasurementerror. We estimatedtheprojective
transformfrom the64 correspondingcamerapositionsand
computedthe residualdistanceerror. The distanceerror
wasnormalizedto relative depthby the meansurfacedis-

Table 1. Tracking statistics over 64 images.
Algorithm: sequential viewpoint

tracking weaving
Pts 3791 2169
Im/Pts(ave.) 4.8 9.1
Im/Pts(max.) 28 48
Pts/Im(ave.) 286 306
Min Pts 1495 458

5

Table 2. Ground truth comparison of 3D camera
positional error between the 64 estimated and the
kno wn robot positions [in % of the mean object
distance of 250 mm].

Cameraposition projective similarity
TrackingError[%] mean dev mean dev
sequential 1.08 0.69 2.31 1.08
2D viewpoints 0.57 0.37 1.41 0.61

tanceof 250 mm. The meanresidualerror droppedfrom
1.1%for sequentialtrackingto 0.58%for viewpoint weav-
ing (seetable2).Thepositionrepeatabilityerrorof therobot
itself is 0.08%.

If we assumethat no projective skew is presentthena
similarity transformwill suffice to mapthecoordinatesets
ontoeachother. A systematicskew however will increase
theresidualerror. To testfor skew we computedthesimi-
larity transformfrom thecorrespondingdatasetsandevalu-
atedtheresidualerror. Herethemeanerrorincreasedwith a
factorof about2.4to 1.4%whichstill is verygoodfor pose
andstructureestimationfrom fully uncalibratedsequences.

5.1. Hand-held officesequence

We testedour approachwith an uncalibratedhand-held
sequence.A digital consumervideo camera(Sony DCR-
TRV900 with progressive scan)was swept freely over a
clutteredsceneon a desk,covering a viewing surfaceof
about1 fge . Theresultingvideostreamwasthendigitized
onanSGIO2bysimplygrabbing187framesatmoreor less
constantintervals. No carewastakento manuallystabilize
the camerasweep.Fig. 5(top) displaystwo imagesof the
sequence.Thecameraviewpointsaretrackedandtheview-
pointmeshtopologyis constructedwith theviewpointmesh
weaving. Fig. 5(bottom)shows thestatisticsof thetracked
3D featurepoints(left) andtheresultingcameraviewpoint
meshwith 3D points (right). The point distribution (left)
shows thecharacteristicweaving structurewhenpointsare
lost and found back throughoutthe sequence.The cam-
era tracking illustratesnicely the zigzagscanof the hand
movementasthecamerascannedthescene.Theviewpoint
meshis irregulardueto thearbitraryhandmovements.On
thebottomhalf onecanseethethereconstructed3D scene
points.

Thestatisticalevaluationgivesanimpressiveaccounton
thetrackingabilities.Thecamerawastrackedover187im-
ageswith at average452 matches/image.A total of 7014
points were generatedand matchedon the averagein 12
imageseach.A single3D point waseventrackedover 181
images,with imagematchesin 95 images.

Scenereconstruction and viewpoint mesh rendering.
Fromthecalibratedsequencewecancomputeany geomet-

20 40 60 80 100 120 140 160 180

1000

2000

3000

4000

5000

6000

7000

Figure 5. Top: Two images from hand-held office
sequence . Bottom left: Distrib ution of 3D feature
points (7014 points, ver tical) over the image se-
quence (187 images, horizontal). Bottom right:
Viewpoint mesh (in blue) with cameras as pyra-
mids and 3D points (black).

ric or imagebasedscenerepresentation.As an example
we show in fig. 6 a geometricsurfacemodelof the scene
with approximatelocal scenegeometrythatwasgenerated
by densesurfacematching.Evenfine detailslike thekey-
boardkeysaremodeled.Moredetailson3D reconstruction
from plenopticsequenceswerediscussedin [10].

Someresultsof image-basedrenderingfrom the view-
point meshare shown in Fig. 7. Theseviews were ren-
deredwithout local geometry. Only a meanplanewasfit-
tedthroughthescenewhichcausesinterpolationshadowing
artifacts. In the closeupviews (right) a detail wasviewed
from differentdirections.Thechangingsurfacereflections
arerenderedcorrectlydueto theview-dependentimaging.

Figure 6. 3D surface model of office scene ren-
dered with shading (left) and texture (right).

6

Figure 7. Left: novel scene view rendered far away
from the viewpoint mesh. The red lines indicate
the projection of the viewpoint mesh into the novel
view. Right: Two closeup views from diff erent
viewing directions. Please note the changing sur -
face reflection on the object surface .

A moredetailedaccountof the renderingtechniquesthat
incorporatelocal depthmapscanbefoundin [11].

6. Further Work and Conclusions

We have proposeda cameracalibrationalgorithm for
geometricandplenopticmodelingfrom uncalibratedhand-
held imagesequences.During imageacquisitionthecam-
era is sweptover the sceneto samplethe viewing sphere
aroundan object. The new algorithmconsidersthe two-
dimensionaltopologyof theviewpointsandweavesaview-
point mesh with high accuracy and robustness. It sig-
nificantly improvesthe existing sequentialstructure-from-
motion approachand allows to fully calibratehand-held
camerasequencesthataretargetedtowardsplenopticmod-
eling. Thecalibratedviewpoint meshwasusedfor the re-
constructionof geometricsurfacemodelsand for image-
basedrendering,whichevenallowsto renderreflectingsur-
faces.

Acknowledgments: We acknowledge financial support
fromtheBelgianprojectIUAP04/24’IMechS’ andtheGer-
manResearchFoundation(DFG) underthe grantnumber
SFB603.

References

[1] P. Beardsley, P. Torr andA. Zisserman:3D Model Acqui-
sition from ExtendedImageSequences.ECCV 96, LNCS
1064,vol.2,pp.683-695.Springer1996.

[2] R. Beß: Kalibrierung einer beweglichen, monoku-
laren Kamera zur Tiefengewinnung aus Bildfolgen. In:
Kropatsch,W. G. andBischof,H. (eds.),InformaticsVol. 5,
Mustererkennung1994,524– 531,SpringerVerlagBerlin,
1994.

[3] O. Faugeras:Whatcanbeseenin threedimensionswith an
uncalibratedstereorig. Proc.ECCV’92, pp.563-578.

[4] O. Faugeras,Q.-T. Luong and S. Maybank: Cameraself-
calibration - Theory and experiments.Proc. ECCV’92,
pp.321-334.

[5] A. Fitzgibbonand A. Zisserman:Automatic CameraRe-
covery for Closedor OpenImageSequences.Proceedings
ECCV’98.LNCSVol. 1406,Springer, 1998.

[6] S. Gortler, R. Grzeszczuk,R. Szeliski,M. F. Cohen: The
Lumigraph.ProceedingsSIGGRAPH’96, pp 43–54,ACM
Press,New York, 1996.

[7] C.G. Harris andJ.M. Pike: 3D PositionalIntegrationfrom
Image Sequences.3rd Alvey Vision Conf, pp. 233-236,
1987.

[8] R. Hartley: Estimationof relative camerapositionsfor un-
calibratedcameras.ECCV’92, pp.579-587.

[9] R. Koch, M. Pollefeys, and L. Van Gool: Multi View-
point Stereo from UncalibratedVideo Sequences.Proc.
ECCV’98, Freiburg, June1998.

[10] R.Koch,M. Pollefeys,andL. VanGool: RobustCalibration
and3D GeometricModelingfrom LargeCollectionsof Un-
calibratedImages.Proc.DAGM 99,Bonn,Germany, 1999.

[11] B. Heigl, R. Koch, M. Pollefeys, J. Denzler, L. Van Gool:
PlenopticModeling andRenderingfrom ImageSequences
takenby aHand–HeldCamera.Proc.DAGM 99,Bonn,Ger-
many, 1999

[12] M. Levoy, P. Hanrahan:Lightfield Rendering.Proceedings
SIGGRAPH’96, pp31–42,ACM Press,New York, 1996.

[13] L. McMillan and G. Bishop, “Plenoptic modeling: An
image-basedrendering system”, Proc. SIGGRAPH’95,
pp.39-46,1995.

[14] M. Pollefeys, R. Koch and L. Van Gool: Self-Calibration
andMetric Reconstructionin spiteof VaryingandUnknown
InternalCameraParameters.Proc. ICCV’98, Bombay, In-
dia,Jan.1998.

[15] M. Pollefeys, R. Koch, M. Vergauwenand L. Van Gool:
Metric 3D SurfaceReconstructionfrom UncalibratedImage
Sequences.In: 3D Structurefrom Multiple Imagesof Large
ScaleEnvironments.LNCS SeriesVol. 1506,pp. 139-154.
Springer-Verlag,1998.

[16] P.H.S. Torr: Motion Segmentationand Outlier Detection.
PhDthesis,Universityof Oxford,UK, 1995.

[17] B. Triggs:TheAbsoluteQuadric.Proc.CVPR’97.

[18] R.Y.Tsai: A VersatileCameraCalibration Techniquefor
High-Accuracy 3D Machine Vision Metrology using off-
the-shelfCamerasandLenses.IEEE JournalRoboticsand
AutomationRA-3,4(Aug. 1987),323-344.

7

Visualmodelingwith ahand-heldcamera

MarcPollefeys
�
, Luc VanGool,MaartenVergauwen,

FrankVerbiest,Kurt Cornelis,JanTops,ReinhardKoch
�

Centerfor Processingof SpeechandImages,K.U.Leuven
KasteelparkArenberg 10,B-3001Leuven-Heverlee,Belgium

Marc.Pollefeys@esat.kuleuven.ac.be
tel.+3216321064fax.+3216321723

submittedto IJCV SpecialIssueon
Multi-View ModelingandRenderingof VisualScenes

Abstract

In thispaperacompletesystemto build visualmodelsfrom cameraimagesis presented.
Thesystemcandealwith uncalibratedimagesequencesacquiredwith a hand-heldcamera.
Basedon tracked or matchedfeaturesthe relationsbetweenmultiple views arecomputed.
Fromthisboththestructureof thesceneandthemotionof thecameraareretrieved.Theam-
biguity on thereconstructionis restrictedfrom projective to metricthroughself-calibration.
A flexible multi-view stereomatchingschemeis usedto obtaina denseestimationof the
surfacegeometry. Fromthecomputeddatadifferenttypesof visualmodelsareconstructed.
Besidesthe traditionalgeometry-andimage-basedapproaches,a combinedapproachwith
view-dependentgeometryand texture is presented.As an applicationfusion of real and
virtual scenesis alsoshown.

keywords: Visualmodeling,Structure-from-Motion,Projectivereconstruction,Self-calibration,
Multi-view stereomatching,Densereconstruction,3D reconstruction,Image-basedrendering,
Augmentedvideo,hand-heldcamera.

1 Intr oduction

During recentyearsa lot of effort was put in developing new approachesfor modelingand
renderingvisual scenes.A few yearsagothemain applicationsof 3d modelingin vision were
robotnavigationandvisual inspection.Nowadayshowever theemphasishaschanged.Thereis�

contactingauthor�
now at Christian-Albrechts-Universityof Kiel

1

moreandmoredemandfor 3D modelsin computergraphics,virtual realityandcommunication.
This resultsin achangein therequirements.Thevisualqualityof themodelsbecomesthemain
point of attention.Thereis animportantdemandfor simpleandflexible acquisitionprocedures.
Thereforecalibrationshouldbeabsentor restrictedto a minimum. Many new applicationsalso
requirerobustlow costacquisitionsystems.Thisstimulatestheuseof consumerphoto-or video
cameras.

In thispaperwepresentanapproachthatcanbeusedto obtainseveraltypesof visualmodels
from imagesacquiredwith an uncalibratedcamera. The useracquiresthe imagesby freely
moving thecameraaroundanobjector scene.Neitherthecameramotionnorthecamerasettings
have to beknown a priori. Thepresentedapproachcangeneratea textured3D surfacemodelor
alternatively rendernew viewsusingacombinedgeometry-andimage-basedapproachthatuses
view-dependenttextureandgeometry. Thesystemcanalsobeusedto combinevirtual objects
with realvideo,yielding augmentedvideosequences.

Otherapproachesfor extracting3D shapeandtexture from imagesequencesacquiredwith
a freely moving camerahave beenproposed.The approachof TomasiandKanade[43] used
an affine factorizationmethodto extract 3D from imagesequences.An importantrestriction
of this systemis the assumptionof orthographicprojection. Another type of approachstarts
from anapproximate3D modelandcameraposesandrefinesthemodelbasedon images(e.g.
Facadeproposedby Debevecet al. [6]). Theadvantageis that lessimagesarerequired.On the
otherhanda preliminarymodelmustbeavailableandthegeometryshouldnot betoo complex.
This approachalsocombinesgeometry-andimage-basedtechniques,however only the texture
is view-dependent.

Theapproachpresentedherecombinesmany ideasandalgorithmsthathavebeendeveloped
in recentyears. This paperaimsat consolidatingtheseresultsby bringing themtogetherand
showing how they canbe combinedto yield a completevisual modelingapproach.The paper
alsocontainssomenew contributionsin theareaof projectivereconstructionandself-calibration.
In Section1.1 notationsand backgroundare given. The rest of the paperis then organized
as follows. Section2 discussesfeatureextraction and matchingand the computationof the
multi-view relations. Section3 dealswith the structureand motion recovery, including self-
calibration.In Section4 theapproachto obtaindensedepthmapsis presentedandin Section5
theconstructionof thedifferentvisualmodelsis discussed.Thepaperis concludedin Section6.

1.1 Notationsand background

A perspectivecamera is modeledthroughtheprojectionequation�����
	 (1)

where � representstheequalityup to a non-zeroscalefactor, 	 is a 4-vectorthatrepresents3D
world point in homogeneouscoordinates,similarly � is a3-vectorthatrepresentsacorresponding
2D imagepoint and � is a ���� projectionmatrix. In a metric or Euclideanframe � canbe

2

factorizedasfollows ��������������� - � � where �!� "#$ % & '(%) *+-,. (2)

containstheintrinsiccameraparameters,� is arotationmatrixrepresentingtheorientationand �
is a3-vectorrepresentingthepositionof thecamera.Theintrinsiccameraparameter

%
represents

the focal lengthmeasuredin width of pixels, (is theaspectratio of pixels, / '102)43 representthe
coordinatesof theprincipal point and

&
is a termaccountingfor theskew. In general

&
canbe

assumedzero. In practice,the principal point is often closeto the centerof the imageandthe
aspectratio (closeto one. In many casesthecameradoesnot perfectlysatisfytheperspective
projectionmodelanddistortionshave to betakeninto account,themostimportantbeingradial
distortion.In practice,it is oftensufficient to modeltheradialdistortionasfollows:����� / 	 3 �5��6 / � � ����� -� � 	 3 with 6 /87 3 � / *:9<;>= /8?A@ 9CB @ 323 � ? BED � � 9 � DFDG* � � (3)

where

;H=
indicatestheamountof radialdistortionthatis presentin theimage.For highaccuracy

applicationsmoreadvancedmodelscanbeused [49, 39].
In this paperthe notation IJ/LK 0 K 3 will be usedto indicatethe Euclideandistancebetween

entitiesin theimages.

two view geometry Thepoint �NM correspondingto thepoint � in anotherimageis boundto be
ontheprojectionof its line of sight O MP��QR� whereQ is thefundamentalmatrix for thetwo views
underconsideration.Therefore,thefollowing equationshouldbesatisfiedfor all corresponding
points: � M �SQR��� D K (4)

The fundamentalmatrix hasrank 2 and the right and left null-spaceof Q correspondsto the
epipoles.TheepipolesT and T M aretheprojectionsof theprojectioncenterof oneimagein the
otherimage.Thefundamentalmatrix canbeobtainedfrom two projectionmatrices� and �UM asQV�XW2� M �ZY\[�]�^� T_�a` (5)

wheretheepipole T �5�]b M with b M thesolutionof � M b M � D
.

Homographies Thesecanbeusedto transferimagepointsthatcorrespondsto 3D pointsthat
areon a specificplanefrom oneimageto theother, i.e. �NMc�Xde� where d is thehomography
that correspondsto that plane(for the two views underconsideration).Thereis an important
relationshipbetweensuchhomographiesandthefundamentalmatrix:Qf�g� T M �a` d and d!�h� T M �i` QCj T Mlk � (6)

with � T M �a` ananti-symmetricmatrix representingthevectorproductwith theepipoleandwith k
a vectorrelatedto theplane.Homographiesfor a plane m �n�po�qsrut � � canalsobeobtainedfrom
projectionmatricesas dvwpxE�5d v x dzy =v w with d v w �5� w|{ t ��-o:qZr �:} (7)

3

From3 points 	A~ 0 	 @ and 	N� a planeis obtainedastheright null spaceof � 	A~N	 @ 	N� � � .

comparing imagesregions Imageregionsaretypically comparedusingsum-of-square-differences
(SSD)or normalizedcross-correlation(NCC). Considera window � in image � anda corre-
spondingregion ��/�� 3

in image � . Thedissimilaritybetweentwo imageregionsbasedon SSD
is givenby I ���f���5� ��/��e/�? 0 B 323 j �s/8? 0 B 3 � @A� /8? 0 B 3 t ? t B (8)

where � /�? 0 B 3 is a weightingfunction that is definedover W. Typically, � /8? 0 B 3 � *
or it is a

Gaussian.Thesimilarity measurebetweentwo imageregionsbasedonNCC is givenby� � ��� � /L��/���/8? 0 B 323 j��� 3 K�/��s/8? 0 B 3 j��� 3 � /8? 0 B 3 t ? t B� ��� � /L��/��e/�? 0 B 323 j��� 3 � /�? 0 B 3 t ? t B K � ��� � /8�s/8? 0 B 3 jg�� 3 � /8? 0 B 3 t ? t B (9)

with �� � ��� � �F/8�]/�? 0 B 3�3 t ? t B and �� � ��� � �s/8? 0 B 3 t ? t B the meanimageintensity in the
consideredregion. Notethatthislastmeasureis invariantto globalintensityandcontrastchanges
over theconsideredregions.

2 Relating images

Startingfrom a collectionof imagesor a video sequencethe first stepconsistsin relatingthe
differentimagesto eachother. This is notaeasyproblem.A restrictednumberof corresponding
points is sufficient to determinethe geometricrelationshipor multi-view constraints between
the images. Sincenot all pointsareequallysuitedfor matchingor tracking(e.g. a pixel in a
homogeneousregion), thefirst stepconsistof selectinganumberof interestingpointsor feature
points. Someapproachesalsouseotherfeatures,suchaslines or curves,but thesewill not be
discussedhere. Dependingon the type of imagedata(i.e. video or still pictures)the feature
pointsaretracked or matchedanda numberof potentialcorrespondencesareobtained. From
thesethemulti-view constraintscanbecomputed.However, sincethecorrespondenceproblem
is an ill-posedproblem,thesetof correspondingpointscanbecontaminatedwith an important
numberof wrongmatchesor outliers. In this case,a traditionalleast-squaresapproachwill fail
andthereforea robust methodis needed.Oncethe multi-view constraintshave beenobtained
they canbeusedto guidethesearchfor additionalcorrespondences.Thesecanthenbeusedto
furtherrefinetheresultsfor themulti-view constraints.

2.1 Featureextraction and matching

Oneof themostimportantrequirementsfor a featurepoint is thatit canbedifferentiatedfrom its
neighboringimagepoints.If this werenot thecase,it wouldn’t bepossibleto matchit uniquely
with acorrespondingpoint in anotherimage.Therefore,theneighborhoodof a featureshouldbe
sufficiently differentfrom theneighborhoodsobtainedafterasmalldisplacement.

4

A secondorderapproximationof the dissimilarity, asdefinedin Eq. (8), betweena image
window � andaslightly translatedimagewindow is givenbyIJ/���? 0 � B 3 � { ��?� B }�� � ��? � Bz�

with � � �f��� {�����¡ ����¡¢ }�� ����� �£��¡¢ � � /8? 0 B 3 t ? t B
(10)

To ensurethatno displacementexists for which I is small, the eigenvaluesof � shouldboth
belarge. This canbeachievedby enforcinga minimal valuefor thesmallesteigenvalue[38] or
alternatively for the following cornerresponsefunction 6n�h¤P¥§¦ � j©¨ / trace � 3 @ [13] where¨ is a parametersetto 0.04(a suggestionof Harris). In thecaseof trackingthis is sufficient to
ensurethat featurescanbe tracked from onevideo frameto the next. In this caseit is natural
to usethetrackingneighborhoodto evaluatethequality of a feature(e.g. a ª«�¬ª window with� /�? 0 B 3 � *

). Trackingitself is doneby minimizingEq. (8) over theparametersof � . For small
stepsa translationis sufficient for � . To evaluatethe accumulateddifferencefrom the startof
thetrackit is advisedto useanaffinemotionmodel.

In the caseof separateframesas obtainedwith a still camera,there is the additionalre-
quirementthatasmuchimagepointsoriginatingfrom thesame3D pointsaspossibleshouldbe
extracted.Therefore,only local maximaof thecornerresponsefunctionareconsideredasfea-
tures.Sub-pixel precisioncanbeachievedthroughquadraticapproximationof theneighborhood
of thelocalmaxima.A typicalchoicefor � /8? 3 in thiscaseis aGaussianwith � D K®ª . Matching
is typically doneby comparingsmall,e.g. ª«�¬ª , windows centeredaroundthefeaturethrough
SSDor NCC. This measureis only invariantto imagetranslationsandcanthereforenot cope
with too largevariationsin camerapose.

To matchimagesthat aremorewidely separated,it is requiredto copewith a larger setof
imagevariations.Exhaustivesearchoverall possiblevariationsiscomputationallyuntractable.A
moreinterestingapproachconsistsof extractingamorecomplex featurethatnotonly determines
theposition,but alsotheotherunknownsof a local affine transformation[48].

2.2 Two view geometrycomputation

Even for an arbitrarygeometricstructure,the projectionsof points in two views containsome
structure.Findingbackthisstructureis notonly interestingto retrieveinformationontherelative
posebetweenthetwo views [8, 14], but alsoto eliminatemismatchesandto facilitatethesearch
for additionalmatches.This structureis equivalentto thefundamentalmatrix. Givena number
of correspondingpointsEquation(4) canbeusedto computeQ . This equationcanberewritten
in thefollowing form: � ?¯? M B ? M ? M ? B M BNB M B M ? B * �±° � D

(11)

with �J�²� ? B�* � � 0 �NMS�³� ? M B M * � � and

°
a vectorcontainingtheelementsof thefundamentalma-

trix. Stacking8 or moreof theseequationsallows to linearly solve for thefundamentalmatrix.
Evenfor 7 correspondingpointstheoneparameterfamily of solutionsobtainedby solving the
linear equationscanbe restrictedto 1 or 3 solutionsby enforcingthe cubic rank-2constraint

5

¤P¥£¦ / Q =S9V´ Q @ 3 � D
. As pointedoutby Hartley [16] it is importantto normalizetheimagecoor-

dinatesbeforesolvingthelinearequations.Otherwisethecolumnsof Equation11 would differ
by severalordersof magnitudeandtheerrorwouldconcentrateonthecoefficientscorresponding
to thesmallercolumns.This normalizationcanbeachievedby transformingtheimagecenterto
theorigin andscalingtheimagessothatthecoordinateshavea standarddeviation of unity. The
resultof thelinearequationscanberefinedby minimizing thefollowing criterion:µ /�¶ 3 �5· W I¸/ � M 0 QR� 3 @ 9 IJ/ � 0 QG�A� M 3 @ Y (12)

ThiscriterioncanbeminimizedthroughaLevenberg-Marquardalgorithm[36].
To computethefundamentalmatrix from a setof matchesthatwereautomaticallyobtained

from a pair of real images,it is importantto explicitly dealwith outliers. If thesetof matches
is contaminatedwith even a small setof outliers, the resultof the above methodcanbecome
unusable.This is typical for all typesof least-squaresapproaches(evennon-linearones).The
problemis that thequadraticpenalty(which is optimal for Gaussiannoise)allows for a single
outlier thatis very far away from thetruesolutionto completelybiasthefinal result.

The approachthat is usedto copewith this problemis the RANSAC algorithm that was
proposedby FischlerandBolles [10]. A minimal subsetof the datais randomlyselectedand
the solutionobtainedfrom it is usedto segmentthe remainderof the datasetin “inliers” and
“outliers”. If the initial setcontainsno outliers, it canbe expectedthat an importantnumber
of inliers will supportthe solution,otherwisethe initial subsetis probablycontaminatedwith
outliers.This procedureis repeateduntil a satisfyingsolutionis obtained.This canfor example
bedefinedasaprobabilityin excessof ¹\º_» thatagoodsubsamplewasselected.Theexpression
for this probability is ¼ � * j / * j¾½À¿ 3iÁ with ½ the fraction of inliers, and Â the numberof
featuresin eachsampleand Ã thenumberof trials (seeRousseeuw[37]).

Oncetheepipolargeometryhasbeencomputedit canbeusedto guidethematchingproce-
duretowardsadditionalmatches.At this point only featuresthat arecloseto the epipolarline
shouldbeconsideredfor matching.Table1 summarizestherobustapproachto thedetermination
of thetwo-view geometry.

3 Structur eand motion

In the previous sectionit wasseenhow differentviews could be relatedto eachother. In this
sectionthe relation betweenthe views and the correspondencesbetweenthe featureswill be
usedto retrieve thestructureof thesceneandthemotionof thecamera.This problemis called
StructureandMotion.

The approachthat is proposedhereextends[1, 25] by beingfully projective andtherefore
not dependenton thequasi-euclideaninitialization. This wasachievedby carryingout all mea-
surementsin the images. This approachprovidesan alternative for the triplet-basedapproach
proposedin [11]. An image-basedmeasurethat is ableto obtaina qualitativedistancebetween
viewpointsis alsoproposedto supportinitialization anddeterminationof closeviews (indepen-
dentlyof theactualprojective frame).

6

Step1. Computeasetof potentialmatches

Step2. While ¼R/�Ä�Å�ÆuÇ�ÅaÈ (&É0 Ä & o Ã�ÂAÇ8È &Ê3GË ¹\ºÉ» do

step2.1selectminimal sample(7 matches)

step2.2computesolutionsfor F

step2.3determineinliers

step3. RefineF basedonall inliers

step4. Look for additionalmatches

step5. RefineF basedonall correctmatches

Table1: Overview of thetwo-view geometrycomputationalgorithm.

At first two imagesareselectedandaninitial reconstructionframeis set-up.Thentheposeof
thecamerafor theotherviewsis determinedin this frameandeachtimetheinitial reconstruction
is refinedandextended.In this way theposeestimationof views thathave no commonfeatures
with the referenceviews also becomespossible. Typically, a view is only matchedwith its
predecessorin the sequence.In mostcasesthis works fine, but in somecases(e.g. whenthe
cameramovesbackand forth) it canbe interestingto also relatea new view to a numberof
additionalviews. Oncethe structureandmotion hasbeendeterminedfor the whole sequence,
the resultscanbe refinedthrougha projective bundleadjustment.Thenthe ambiguitywill be
restrictedto metricthroughself-calibration.Finally, ametricbundleadjustmentis carriedout to
obtainanoptimalestimationof thestructureandmotion.

3.1 Initial structur eand motion

Thefirst stepconsistsof selectingtwoviewsthataresuitedfor initializing thesequentialstructure
andmotion computation.On the onehandit is importantthat sufficient featuresarematched
betweentheseviews,ontheotherhandtheviewsshouldnotbetoocloseto eachothersothatthe
initial structureiswell-conditioned.Thefirstof thesecriterionsiseasytoverify, thesecondoneis
harderin theuncalibratedcase.Theimage-baseddistancethatweproposeis themediandistance
betweenpointstransferredthroughanaverageplanar-homographyandthecorrespondingpoints
in thetargetimage:

medianÌÍIJ/ d>� w 0 � Mw 3�Î (13)

7

Thisplanar-homographyH is determinedasfollows from thematchesbetweenthetwo views:d!�Ï� T_�a` Q 9 T k �Á wÑÐ with k Á wÑÐ � argminÒ · w I¸/2/ � T_�i` Q 9 T k � 3 � w 0 � Mw 3 @ (14)

In practicetheselectionof theinitial framecanbedoneby maximizingtheproductof thenumber
of matchesandthe image-baseddistancedefinedabove. Whenfeaturesarematchedbetween
sparseviews, the evaluationcanbe restrictedto consecutive frames. However, whenfeatures
aretrackedover a videosequence,it is importantto considerviews thatarefurtherapartin the
sequence.

Initial frame Two imagesof thesequenceareusedto determinea referenceframe.Theworld
frameis alignedwith thefirst camera.Thesecondcamerais chosensothattheepipolargeometry
correspondsto theretrieved Q = @ :� = � � �§� ` � � ÓÉ� �� @ � �g� T = @ �a` Q = @ 9 T = @ k � � ÔT = @ � (15)

Equation15 is not completelydeterminedby the epipolargeometry(i.e. Q = @ and T = @), but has
4 moredegreesof freedom(i.e. k and). k determinesthepositionof the referenceplane(i.e.
theplaneat infinity in anaffine or metricframe)and determinestheglobalscaleof therecon-
struction.Theparameter cansimplybeput to oneor alternatively thebaselinebetweenthetwo
initial views canbescaledto one. In [1] it wasproposedto setthecoefficient of k to ensurea
quasi-Euclideanframe,to avoid too largeprojectivedistortions.Thiswasneededbecausenotall
partsof thealgorithmswherestrictly projective. For thestructureandmotionapproachproposed
in this paperk canbearbitrarily set,e.g. k �Õ� DFDFD � � .

Initializing structure Oncetwo projectionmatriceshave beenfully determinedthe matches
can be reconstructedthroughtriangulation. Due to noisethe lines of sight will not intersect
perfectly. In theuncalibratedcasetheminimizationsshouldbecarriedout in theimagesandnot
in projective3D space.Therefore,thedistancebetweenthereprojected3D point andtheimage
pointsshouldbeminimized: IJ/ � = 0 � = 	 3 @ 9 I¸/ � @ 0 � @ 	 3 @ (16)

It was notedby Hartley and Sturm [17] that the only importantchoiceis to selectin which
epipolarplanethe point is reconstructed.Oncethis choiceis madeit is trivial to selectthe
optimalpoint from theplane.A bundleof epipolarplaneshasonly oneparameter. In this case
the dimensionof the problemis reducedfrom 3-dimensionsto 1-dimension.Minimizing the
following equationis thusequivalentto minimizingequation(16).IJ/ � = 0 O = /�Ö 323 @ 9 I¸/ � @ 0 O @ /�Ö 323 @ (17)

with O = /�Ö 3 and O @ /�Ö 3 theepipolarlines obtainedin functionof theparameterÖ describingthe
bundleof epipolarplanes.It turnsout (see[17]) thatthis equationis apolynomialof degree6 inÖ . Theglobalminimumof equation(17) canthuseasilybecomputed.In bothimagesthepoint
on the epipolarline O = /�Ö 3 and O @ /�Ö 3 closestto the points � = resp. � @ is selected.Sincethese
pointsarein epipolarcorrespondencetheir linesof sightmeetin a3D point.

8

3.2 Updating the structur e and motion

The previous sectiondealtwith obtainingan initial reconstructionfrom two views. This sec-
tion discusseshow to adda view to an existing reconstruction.First the poseof the camerais
determined,then the structureis updatedbasedon the addedview andfinally new pointsare
initialized.

3.3 projectiveposeestimation

For every additionalview the posetowardsthe pre-existing reconstructionis determined,then
thereconstructionis updated.This is illustratedin Figure1. Thefirst stepconsistsof finding the
epipolargeometryasdescribedin Section2.2. Thenthe matcheswhich correspondto already
reconstructedpointsareusedto infer correspondencesbetween2D and3D. Basedon thesethe
projectionmatrix �Ø× is computedusingarobustproceduresimilar to theonelaid out in Table1.
In this casea minimal sampleof 6 matchesis neededto compute�Ø× . A point is consideredan
inlier if it is possibleto reconstructa 3D point for which themaximalreprojectionerror for all
views (including thenew view) is below a presetthreshold.Once �U× hasbeendeterminedthe
projectionof alreadyreconstructedpointscanbepredicted.This allows to find someadditional
matchesto refinethe estimationof �U× . This meansthat the searchspaceis graduallyreduced
from thefull imageto theepipolarline to thepredictedprojectionof thepoint.

This procedureonly relatestheimageto thepreviousimage.In fact it is implicitly assumed
thatonceapointgetsoutof sight,it will notcomeback.Althoughthisis truefor many sequences,
this assumptionsdoesnotalwayshold. Assumethataspecific3D point gotoutof sight,but that
it is visible againin the last two views. In this casea new 3D point will be instantiated.This
will not immediatelycauseproblems,but sincethesetwo 3D pointsareunrelatedfor thesystem,
nothingenforcestheir positionto correspond.For longersequenceswherethecamerais moved
backandforth over thescene,this canleadto poorresultsdueto accumulatederrors.

The solution that we proposeis to matchall the views that areclosewith the actualview
(asdescribedin Section2.2). For every closeview a setof potential2D-3D correspondencesis
obtained.Thesesetsaremergedandthe cameraprojectionmatrix is estimatedusingthesame
robustprocedureasdescribedabove,but on themergedsetof 2D-3D correspondences.

Closeviews are determinedas follows. First a planar-homographythat explains bestthe
image-motionof featurepointsbetweenthe actualandthe previous view is determined(using
Equation14). Then,themedianresidualfor the transferof thesefeaturesto otherviews using
homographiescorrespondingto thesameplanearecomputed(seeEquation13). Sincethedirec-
tion of thecameramotionis giventhroughtheepipoles,it is possibleto limit theselectionto the
closestviewsin eachdirection.In thiscaseit is betterto takeorientationinto account[18, 27] to
differentiatebetweenoppositedirections.

Refining and extendingstructure Thestructureis refinedusinganiteratedlinearreconstruc-
tion algorithmon eachpoint. Equation1 canberewritten to becomelinearin 	 :Ù �Ú	 ? j Ù = 	 � DÙ ��	 B j Ù @ 	 � D

(18)

9

mi

i−3 mi−2 mi−1

M

m
Fi−3m

mi−2 mi−1
~

~
~

Figure1: Imagematches(� w y = 0 � w) arefoundasdescribedbefore.Sincetheimagepoints, � w y = ,
relateto objectpoints, 	 w , theposefor view Å canbecomputedfrom theinferredmatches(0 � w).
A point is acceptedasaninlier if its line of sightprojectssufficiently closeto all corresponding
points.

10

with
Ù w the Å -th row of � and /8? 0 B 3 being the imagecoordinatesof the point. An estimate

of 	 is computedby solving the systemof linear equationsobtainedfrom all views wherea
correspondingimagepoint is available. To obtaina bettersolution the criterion Û�I¸/ �Ü	 0 � 3
shouldbe minimized. This canbeapproximatelyobtainedby iteratively solving the following
weightedlinearequations(in matrix form):*Ù �ÊÝ	 { Ù � ? j Ù =Ù � B j Ù @ } 	�� D

(19)

where Ý	 is theprevioussolutionfor 	 . This procedurecanberepeateda few times. By solving
this systemof equationsthroughSVD a normalizedhomogeneouspoint is automaticallyob-
tained. If a 3D point is not observed thepositionis not updated.In this caseonecancheckif
the point wasseenin a sufficient numberof views to be kept in the final reconstruction.This
minimum numberof views canfor examplebe put to three. This avoids to have an important
numberof outliersdueto spuriousmatches.

Of coursein animagesequencesomenew featureswill appearin everynew image.If point
matchesareavailablethatwerenot relatedto anexisting point in thestructure,thenanew point
canbeinitialized asin section3.1.

After thisprocedurehasbeenrepeatedfor all theimages,onedisposesof cameraposesfor all
theviewsandthereconstructionof theinterestpoints.In thefurthermodulesmainly thecamera
calibrationis used.Thereconstructionitself is usedto obtainanestimateof thedisparityrange
for thedensestereomatching.

3.4 Refining structur eand motion

Oncethestructureandmotionhasbeenobtainedfor thewholesequence,it is recommendedto
refineit througha globalminimizationstep.A maximumlikelihoodestimationcanbeobtained
throughbundleadjustment[46, 39]. Thegoal is to find theparametersof thecameraview �Ø×
andthe3D points 	 w for which themeansquareddistancesbetweentheobservedimagepoints�4× w andthereprojectedimagepoints �Ø× / 	 w 3 is minimized.Thecameraprojectionmodelshould
alsotake radialdistortioninto account.For Ã viewsand Æ pointsthefollowing criterionshould
beminimized: Þ«ß�àáAâ�ã äÚå Á·×¡æ = Ð· w æ = IJ/ �4× w 0 �U× / 	 w 323 @ (20)

If the imageerror is zero-meanGaussianthenbundleadjustmentis the Maximum Likelihood
Estimator. Although it canbe expressedvery simply, this minimizationproblemis huge. For
a typical sequenceof 20 views and 2000 points, a minimization problemin more than 6000
variableshasto besolved. A straight-forwardcomputationis obviously not feasible.However,
thespecialstructureof theproblemcanbeexploitedto solvetheproblemmuchmoreefficiently.

Theobservedpoints�4× w beingfixed,aspecificresidual(ç× w � IJ/ �4× w 0 �Ø×¡	 w 3 @ is only dependent
on thepoint Å -th pointandthe ¨ -th cameraview. This resultsin asparsestructurefor thenormal
equations.Using this structurethe points 	 w canbe eliminatedfrom the equations,yielding a

11

muchsmallerbut denserproblem. Views thathave featuresin commonarenow related.For a
long sequencewherefeaturestendto only be seenin a few consecutive views, the matrix that
hasto besolvedis still sparse(typically banddiagonal).

To concludethis sectionanoverview of thealgorithmto retrieve structureandmotionfrom
a sequenceof imagesis given.Two views areselectedanda projective frameis initialized. The
matchedcornersarereconstructedto obtainaninitial structure.Theotherviews in thesequence
arerelatedto theexisting structureby matchingthemwith their predecessor. Oncethis is done
the structureis updated.Existing pointsarerefinedandnew pointsare initialized. Whenthe
cameramotionimpliesthatpointscontinuouslydisappearandreappearit is interestingto relate
an imageto othercloseviews. Oncethestructureandmotionhasbeenretrieved for thewhole
sequence,theresultscanberefinedthroughbundleadjustment.Thewholeprocedureis resumed
in Table2.

3.5 Upgrading to metric

The reconstructionobtainedasdescribedin the previous sectionsis only determinedup to an
arbitrary projective transformation. This might be sufficient for someroboticsor inspection
applications,but certainlynot for visualization.Thereforewe needa methodto upgradethere-
constructionto a metricone(i.e. determinedup to anarbitraryEuclideantransformationanda
scalefactor).Thiscanbedoneby imposingsomeconstraintsontheintrinsiccameraparameters.
Thisapproachthatis calledself-calibrationhasreceivedalot of attentionin recentyears.Mostly
self-calibrationalgorithmsareconcernedwith unknown but constantintrinsic cameraparame-
ters[9, 15,35,20,45]. Somealgorithmsfor varyingintrinsic cameraparametershavealsobeen
proposed[34, 21]. In somecasesthe motion of the camerais not generalenoughto allow for
self-calibrationto uniquelyrecover themetricstructureandanambiguityremains.More details
canbefoundin [40] for constantintrinsicsandin [41, 31, 22] for varyingintrinsics.

The approachthat is proposedhereis basedon [32] but was was modified to bettertake
into accountthe a priori informationon the intrinsic cameraparameters,therebyreducingthe
problemof critical motionsequences.

The imageof the absoluteconic Oneof themostimportantconceptsfor self-calibrationis the
absoluteconicandits projectionin theimages.Thisconicis invariantto Euclideanmotionsand
,therefore,its relative positionto a moving camerais constant.This meansthat its imageonly
dependson the intrinsic cameraparametersof the cameraandnot on the extrinsic parameters.
Oncetheabsoluteconichasbeenidentifiedin theprojective frameof thereconstruction,it can
beusedto upgradethereconstructionto metric.Thesimplestwayto representtheabsoluteconic
is throughthe dual absolutequadric èGé [45]. The dual imageof the absoluteconic ê:é is then
obtainedasfollows: ê é ��� è é �Ø� K (21)

12

Step1. Matchor trackpointsover thewholeimagesequence.

Step2. Initialize thestructureandmotionrecovery

step2.1.Selecttwo views thataresuitedfor initialization.

step2.2.Relatetheseviewsby computingthetwo view geometry.

step2.3.Setup theinitial frame.

step2.4.Reconstructtheinitial structure.

Step3. For everyadditionalview

step3.1. Infer matchesto the structureandcomputethe camera
poseusinga robustalgorithm.

step3.2.Refinetheexistingstructure.

step3.3. (optional)For alreadycomputedviewswhichare“close”

3.4.1. Relatethis view with thecurrentview by finding fea-
turematchesandcomputingthetwo view geometry.

3.4.2. Infer new matchesto thestructurebasedon thecom-
putedmatchesandaddtheseto thelist usedin step3.1.

Refinetheposefrom all thematchesusinga robustalgorithm.

step3.5. Initialize new structurepoints.

Step4. Refinethestructureandmotionthroughbundleadjustment.

Table2: Overview of theprojectivestructureandmotionalgorithm.

13

By filling in Euclideancameraprojectionmatricesin Equation(21) it is easyto verify that the
intrinsiccameraparametersaredirectly relatedto theintrinsiccameraparameters:ê é �ë��� � (22)

Sincethe imagesare independentof the projective basisof the reconstruction,Equation(22)
is alwaysvalid andconstraintson the intrinsicscanbe translatedto constraintson theabsolute
conic.

linear self-calibration The approachproposedin this paperis inspiredfrom [32], however,
someimportantimprovementsweremade. A priori knowledgeaboutthe parametersis intro-
ducedin thelinearcomputations.This reducestheproblemswith critical motionsequences[40,
31].

Thefirst stepconsistsof normalizingtheprojectionmatrices.The following normalization
is proposed: �Øìí�5� y =ì � with �îìí� "#$ �

9<ï D ð @� 9<ï ñ @*�+-,. (23)

where � and

ï
arethewidth, resp.heightof theimage.After thenormalizationthefocal length

shouldbeof theorderof unity andtheprincipalpoint shouldbecloseto theorigin. Theabove
normalizationwouldscalea focal lengthof a60mmlensto 1 andthusfocal lengthsin therange
of 20mmto 180mmwouldendupin therange� *Êò � 0 �ó� . Theaspectratio is typically alsoaround1
andtheskew canbeassumed0 for all practicalpurposes.Making theseapriori knowledgemore
explicit andestimatingreasonablestandarddeviationsonecouldfor exampleget

%ô (%Hô *\õ � ,'Jôh)Hô Döõ÷D K * , (ô *GõfD K * and
& � D

. It is now interestingto investigatetheimpactof this
knowledgeon ê é :

ê é ���î���î� "#$ % @
9 & @ 9 ' @ & (% 9 'A) '& (% 9 'A) (@ % @ 9) @)') *H+-,. ô "#$

:õ ¹ õøD K D4 õUD K *õøD K D4* *:õ ¹ õUD K *õøD K * õøD K * * +-,. (24)

and ê é@i@ ò ê é=i= ô *ØõÏD K®ù . The constraintson the left-handside of Equation(21) shouldalso
be verified on the right-handside (up to scale). The uncertaintycanbe take into accountby
weightingtheequations. =úiû Wýü = è é ü = � j ü � è é ü � �ZY � D=úiû Wýü @ è é ü @ �>j ü � è é ü �¡� Y � D=þ2ÿ @ û Wýü = è é ü = � j ü @ è é ü @ � Y � D=þ2ÿ = û W ü = è é ü @ �ZY � D=þ2ÿ = û W ü = è é ü � � Y � D=þ2ÿ þ = û W ü @ èGé ü � �ZY � D (25)

14

with ü w the Å th row of � and � ascalefactorthatis initially setto 1 andlateron to ü � Ýè é ü �¡� withÝè é the resultof theprevious iteration. Since è é is a symmetric�>� � matrix it is parametrized
through10 coefficients.An estimateof thedualabsolutequadric èGé canbeobtainedby solving
theabovesetof equationsfor all viewsthroughlinearleast-squares.Therank-3constraintshould
beimposedby forcing thesmallestsingularvalueto zero.This schemecanbeiterateduntil the� factorsconverge (typically after a few iterations). The upgradingtransformation� can be
obtainedfrom diag / * 0 * 0 * 0 D 3 � �]è é � � by decompositionof è é .
non-linear self-calibration refinement Beforegoing for a bundle-adjustmentit canstill be
interestingto refinethe linearself-calibrationresultsthrougha minimizationthatonly involves
thecameraprojectionmatrices.Let usdefinethefunctions

% /ÚK 3£0 (/ÚK 3£0ý' /LK 3�0ý) /ÚK 3 and
& /ÚK 3 that re-

spectively extractthefocal length,aspectratio,coordinatesof theprincipalpointandskew from
a projectionmatrix (in practicethis is donebasedon QR-decomposition).Thenour expecta-
tions for thedistributionsof theparameterscouldbe translatedto thefollowing criterion(for a
projectionmatrixnormalizedasin Equation(23)):µ /�� 3 � · w ������� / % / � w � y = 3�3 @����� /�� 3 @ 9 ����� / (/ � w � y = 3�3 @����� / * K * 3 @ 9 ' / � w � y = 3 @D K * @ 9) / � w � y = 3 @D K * @ 9 & / � w � y = 3 @D K D4* @ 	

(26)
Note that since

%
and (indicaterelative andnot absolutevalues,it is moremeaningfulto use

logarithmicvaluesin the minimization. This alsonaturallyavoids that the focal lengthwould
collapseto zerofor somedegeneratecases.In this criterion � shouldbe parametrizedwith 8
parametersandinitialized with thesolutionof thelinearalgorithm.Therefinedsolutionfor the
transformationcanthenbeobtainedas:��
 ¿� ����� � Þ«ß�à µ /�� 3

(27)

Sometermscan also be addedto enforceconstantparameters,e.g. ������������ á¯å������! " y ������� "#������ þ2ÿ = # with����� %
theaveragelogarithmof theobservedfocal length.Themetricstructureandmotionis then

obtainedas �%$ �÷� � y = and 	&$Ï� � 	 (28)

This resultcanthenfurther be refinedthroughbundleadjustment.In this casethe constraints
on the intrinsicsshouldalsobeenforcedduringtheminimizationprocess.For moredetailsthe
readeris referredto [46].

4 Densesurfaceestimation

With thecameracalibrationgivenfor all viewpointsof thesequence,wecanproceedwith meth-
odsdevelopedfor calibratedstructurefrom motion algorithms.The featuretrackingalgorithm
alreadydeliversa sparsesurfacemodelbasedon distinct featurepoints. This however is not
sufficient to reconstructgeometricallycorrectandvisually pleasingsurfacemodels.This taskis

15

Figure2: Original imagepair (left) andrectifiedimagepair (right).

accomplishedby a densedisparitymatchingthatestimatescorrespondencesfrom thegrey level
imagesdirectly by exploiting additionalgeometricalconstraints.The densesurfaceestimation
is donein a numberof steps.First imagepairsarerectifiedto thestandardstereoconfiguration.
Thendisparitymapsarecomputedthrougha stereomatchingalgorithm. Finally a multi-view
approachintegratestheresultsobtainedfrom severalview pairs.

4.1 Rectification

Sincethecalibrationbetweensuccessive imagepairswascomputed,theepipolarconstraintthat
restrictsthe correspondencesearchto a 1-D searchrangecan be exploited. Imagepairs are
warpedso thatepipolarlinescoincidingwith the imagescanlines. Thecorrespondencesearch
is then reducedto a matchingof the imagepoints along eachimagescan-line. This results
in a dramaticincreaseof the computationalefficiency of the algorithmsby enablingseveral
optimizationsin thecomputations.

For somemotions(i.e. whentheepipoleis locatedin theimage)standardrectificationbased
onplanarhomographiesis notpossibleandamoreadvancedprocedureshouldbeused.Theap-
proachusedin thepresentedsystemwasproposedin [33]. Themethodcombinessimplicity with
minimal imagesizeandworksfor all possiblemotions.Thekey ideais to usepolarcoordinates
with theepipoleasorigin. Correspondinglinesaregiventhroughtheepipolargeometry. By tak-
ing theorientation[27] into accountthematchingambiguityis reducedto half epipolarlines.A
minimal imagesizeis achievedby computingtheanglebetweentwo consecutiveepipolarlines
thatcorrespondto rows in therectifiedimagesto have theworstcasepixel on the line preserve
its area.

Someexamples A first examplecomesfrom the castlesequence.In Figure2 an imagepair
andtheassociatedrectifiedimagepair areshown. A secondexamplewasfilmed with a hand-
helddigital videocamerain theBéguinagein Leuven. Due to thenarrow streetsonly forward
motion is feasible. In this casethe full advantageof the polar rectificationschemebecomes
clearsincethis sequencecould not have beenhandledthroughtraditionalplanarrectification.
An exampleof a rectifiedimagepair is given in Figure3. Note that the whole left part of the
rectified imagescorrespondsto the epipole. On the right sideof this figure a model that was
obtainedby combiningtheresultsfrom severalimagepairsis shown.

16

Figure3: Rectifiedimagepair (left) andsomeviewsof thereconstructedstreetmodel(right).

17

1 4

1 2 1,23,4 3 4

2 3

P Pk k+1

op
tim

al
pa

th

epipolar line image k1 2 3,4

1,2 image l

search
region

ep
ip

ol
ar

 li
ne

 im
ag

e
l

image k
occlusion

occlusion

3

4

Figure4: Illustrationof theorderingconstraint(left), Densematchingasa pathsearchproblem
(right).

4.2 Stereomatching

In additionto the epipolargeometryotherconstraintslike preservingthe orderof neighboring
pixels,bidirectionaluniquenessof thematch,anddetectionof occlusionscanbeexploited.These
constraintsare usedto guide the correspondencetowardsthe most probablescan-linematch
usinga dynamicprogrammingscheme. This approachoperateson rectifiedimagepairsandis
illustratedin Fig. 4. Thematchersearchesat eachpixel in oneimagefor maximumnormalized
crosscorrelationin theotherimageby shiftingasmallmeasurementwindow (kernelsize5x5 to
7x7 pixel) alongthecorrespondingscanline. Matchingambiguitiesareresolvedby exploiting
theorderingconstraintin thedynamicprogrammingapproach[23]. Thealgorithmwasfurther
adaptedto employ extendedneighborhoodrelationshipsanda pyramidalestimationschemeto
reliablydealwith very largedisparityrangesof over50%of imagesize[7]. Thedisparitysearch
rangeis limited basedon thedisparitiesthatwereobservedfor thefeaturesin thestructureand
motionrecovery.

4.3 Multi-view linking

The pairwisedisparityestimationallows to computeimageto imagecorrespondencebetween
adjacentrectifiedimagepairs,andindependentdepthestimatesfor eachcameraviewpoint. An
optimaljoint estimateis achievedby fusingall independentestimatesinto acommon3D model.
The fusioncanbeperformedin aneconomicalway throughcontrolledcorrespondencelinking
(seeFigure5). A point is transferredfrom oneimageto thenext imageasfollows:� M ��6 M y = / 6 / � 3 9 IJ/ 6 / � 323 (29)

18

ne

kL

e

......
P1

P Pi+2

nP

k+1

k+1P

k-2

Pk-1 Pk
Downward linking upward linking'(

P

P

...
P

P

ek+1

P

P

P

1 N

kL
outlier

link terminates
k+2

...

k-2

k-1
k

k+1

Figure5: Depth fusion and uncertaintyreductionfrom correspondencelinking (left), linking
stopswhenanoutlier is encountered(right).

with 6 /LK 3 and 6 M /ÚK 3 functionsthat mappointsfrom the original imageinto the rectifiedimage
and IJ/ÚK 3 a function that correspondsto the disparitymap. Whenthe depthobtainedfrom the
new imagepoint �NM is outsidetheconfidenceinterval thelinking is stopped,otherwisetheresult
is fusedwith thepreviousvaluesthrougha Kalmanfilter. This approachis discussedinto more
detailin [24]. Thisapproachcombinestheadvantagesof smallbaselineandwidebaselinestereo.
It canprovide a very densedepthmapby avoiding mostocclusions. The depthresolutionis
increasedthroughthe combinationof multiple viewpointsand large global baselinewhile the
matchingis simplifiedthroughthesmalllocalbaselines.Dueto multipleobservationsof asingle
surfacepointsthetexturecanbeenhancedandnoiseandhighlightscanberemoved.

Someresults Thequantitativeperformanceof correspondencelinking canbetestedin differ-
ent ways. Onemeasurealreadymentionedis the visibility of an objectpoint. In connection
with correspondencelinking, we have definedvisibility) asthenumberof views linkedto the
referenceview. Another importantfeatureof the algorithmis the densityandaccuracy of the
depthmaps.To describeits improvementover the2-view estimator, wedefinethefill rate ¶ and
theaveragerelativedeptherror * asadditionalmeasures.

The 2-view disparity estimatoris a specialcaseof the proposedlinking algorithm, hence
bothcanbecomparedonanequalbasis.The2-view estimatoroperatesontheimagepair / ¨ 0 ¨ 9* 3

only, while the multi-view estimatoroperateson a sequence

* Ë ¨ Ë,+
with

+ - � � .
Theabove definedstatisticalmeasureswerecomputedfor differentsequencelengthsN. Figure
6 displaysvisibility and relative deptherror for sequencesfrom 2 to 15 imagesof the castle
sequence,chosensymmetricallyaroundthe referenceimage. The averagevisibility) shows
that for up to 5 imagesnearlyall views areutilized. For 15 images,at average9 imagesare
linked.Theamountof linking is reflectedin therelativedeptherrorthatdropsfrom 5% in the2
view estimatorto about1.2%for 15 images.

Linking two views is theminimumcasethatallows triangulation.To increasethereliability

19

2 3 5 7 9 11 13 15
0

1

2

3

4

5

E
[%

]

2 3 4 5
0

1

2

3

4

5

E
[%

]
2 3 5 7 9 11 13 15

0

2

4

6

8

10

N [view]

V
[v

ie
w

]

2 3 4 5
0

20

40

60

80

100

Vmin [view]

F
[%

]

Figure6: Statisticsof thecastlesequence.Influenceof sequencelength
+

on visibility) and
relativedeptherror * . (left) Influenceof minimumvisibility) Á w®Ð onfill rate ¶ anddeptherror *
for

+ � *É*
(center).Depthmap(above: dark=near, light=far)anderrormap(below: dark=large

error, light=smallerror)for
+ � *É*

and) Á wÑÐ � � (right).

of the estimates,a surfacepoint shouldoccurin morethantwo images.We canthereforeim-
posea minimumvisibility) Á wÑÐ on a depthestimate.This will rejectunreliabledepthestimates
effectively, but will alsoreducethefill rateof thedepthmap.

Thegraphsin figure6(center)show thedependency of thefill rateanddeptherroron min-
imum visibility for N=11. Thefill ratedropsfrom 92%to about70%,but at thesametime the
deptherror is reducedto 0.5% due to outlier rejection. The depthmapand the relative error
distributionoverthedepthmapis displayedin Figure6(right). Theerrordistributionshowsape-
riodic structurethat in factreflectsthequantizationuncertaintyof thedisparityresolutionwhen
it switchesfrom onedisparityvalueto thenext.

5 Visual scenerepresentations

In theprevioussectionsa densestructureandmotionrecovery approachwasgiven. This yields
all the necessaryinformationto build different typesof visual models. In this sectionseveral
typesof modelswill beconsidered.First, theconstructionof texture-mapped3D surfacemodels
is discussed.Then,acombinedimage-andgeometry-basedapproachis presentedthatcanrender
modelsrangingfrom pureplenopticto view-dependenttexture andgeometrymodels. Finally,
thepossibilityof fusionof realandvirtual scenesin videois alsotreated.Thesedifferentcases
will now bediscussedin moredetail.

20

5.1 3D surfacereconstruction

The 3D surfaceis approximatedby a triangularmeshto reducegeometriccomplexity and to
tailor themodelto the requirementsof computergraphicsvisualizationsystems.A simpleap-
proachconsistsof overlayinga 2D triangularmeshon top of oneof theimagesandthenbuild a
corresponding3D meshby placingtheverticesof thetrianglesin 3D spaceaccordingto theval-
uesfoundin thecorrespondingdepthmap.To reducenoiseit is recommendedto first smooththe
depthimage(thekernelcanbechosenof thesamesizeasthemeshtriangles).Theimageitself
canbeusedastexturemap(thetexturecoordinatesaretrivially obtainedasthe2D coordinates
of thevertices).

Figure7: Surfacereconstructionapproach(top): A triangularmeshis overlaid on top of the
image.Theverticesareback-projectedin spaceaccordingto thedepthvalues.Fromthis a 3D
surfacemodelis obtained(bottom)

It canhappenthat for someverticesno depthvalueis availableor that theconfidenceis too
low. In thesecasesthecorrespondingtrianglesarenot reconstructed.Thesamehappenswhen
trianglesareplacedoverdiscontinuities.Thisis achievedby selectingamaximumanglebetween
the normalof a triangleandthe line-of-sightthroughits center(e.g. 85 degrees).This simple
approachworksverywell on thedensedepthmapsasobtainedthroughmulti-view linking. The
surfacereconstructionapproachis illustratedin Figure7. Thetexturecanbeenhancedthrough

21

themulti-view linking scheme.A medianor robustmeanof thecorrespondingtexturevaluesis
computedto discardimagingartifactslikesensornoise,specularreflectionsandhighlights[30].

To reconstructmorecomplex shapesit is necessaryto combineresultsfrom multiple depth
maps. The simplestapproachconsistsof generatingseparatemodelsindependentlyand then
loadingthemtogetherin the graphicssystem.Sinceall depth-mapscanbe locatedin a single
metric frame, registration is not an issue. For more complex scenesit can be interestingto
integratethe differentmeshesinto a singlemesh.Dif ferentapproacheshave beenproposedto
dealwith this problem. Thesecanbroadlybe classifiedin surface-basedapproaches[47] and
volumetricapproaches[5].

Example The Indian templesequencewasshot in Ranakpur(India) usinga standardNikon
F50 photocameraandthenscanned.The sequenceseenat the top of Figure8 wasprocessed
throughthe methodpresentedin this paper. The resultscanbe seenin the middle and lower
part of Figure8. Somemoredetailedviews canbe seenin Figure9. Note that someof these
artificial views aretakenunderviewing anglesthatarevery differentfrom theoriginal pictures.
Thisshows thattherecoveredmodelsallow to extrapolateviewpointsto someextent.

5.2 Combined image-and geometry-basedscenevisualization

In thissectionadifferentapproachis takento thevisualizationof 3D scenes.An image-basedap-
proachis proposedthatcanefficiently dealwith hand-heldcameraimages.An underlyingview-
dependentgeometryis usedto minimize artifactsduring visualization. This approachavoids
the needfor a globally consistent3D surfacerepresentation.This allows to renderrealistic
views of morecomplex scenesandto reproducevisualeffectssuchashighlightsandreflections
during rendering. A morein depthdiscussionof this approachcanbe found in the following
papers[26, 25, 19].

For renderingnew views two major conceptsareknown in literature. The first one is the
geometrybasedconcept.The scenegeometryis reconstructedfrom a streamof imagesanda
singletextureis synthesizedwhichis mappedontothisgeometry. For thisapproach,alimited set
of cameraviewsis sufficient,but view-dependenteffectssuchasspecularitiescannotbehandled
appropriately. Thisapproachwasdiscussedin theprevioussection.Thesecondmajorconceptis
image-basedrendering.This approachmodelsthesceneasa collectionof views all aroundthe
scenewithout anexactgeometricalrepresentation[28]. New (virtual) views arerenderedfrom
therecordedonesby interpolation.Optionallyapproximategeometricalinformationcanbeused
to improve the results[12]. It wasshown that this cangreatly reducethe requiredamountof
images[2].

Plenoptic modelingand rendering In [29] theappearanceof a sceneis describedthroughall
light rays(2D) thatareemittedfrom every 3D scenepoint, generatinga 5D radiancefunction.
Subsequentlytwo equivalentrealizationsof theplenopticfunctionwereproposedin form of the
lightfield [28], andthe lumigraph[12]. They handlethecasewhentheobserver andthe scene
canbeseparatedby a surface.Hencetheplenopticfunctionis reducedto four dimensions.The

22

Figure8: TheIndian templesequence(top), recoveredsparsestructureandmotion(middle)and
texturedandashadedview of thereconstructed3D surfacemodel(bottom).

23

Figure9: Somemoredetailedviewsof the Indian templereconstruction.

24

radianceis representedasa function of light rayspassingthroughthe separatingsurface. To
createsuchaplenopticmodelfor realscenes,a largenumberof views is taken.Theseviewscan
beconsideredasacollectionof light rayswith accordingcolorvalues.They arediscretesamples
of theplenopticfunction. Thelight rayswhich arenot representedhave to beinterpolatedfrom
recordedonesconsideringadditionalinformationon physicalrestrictions.Oftenrealobjectsare
supposedto belambertian,meaningthatonepoint of theobjecthasthesameradiancevaluein
all possibledirections. This implies that two viewing rayshave the samecolor value, if they
intersectat a surfacepoint. If speculareffectsoccur, this is not true any more. Two viewing
raysthenhavesimilarcolor valuesif their directionis similar andif theirpoint of intersectionis
neartherealscenepointwhichoriginatestheir colorvalue.To renderanew view wesupposeto
have a virtual cameralooking at thescene.We determinethoseviewing rayswhich arenearest
to thoseof this camera.Thenearera ray is to a givenray, thegreateris its supportto thecolor
value.

The original 4D lightfield [28] datastructureemploys a two-planeparameterization.Each
light ray passesthroughtwo parallelplaneswith planecoordinates/ &É0/.�3 and / 'Ô0ý)N3 . The / 'Ô0ý)N3 -
planeis theviewpointplane in which all camerafocal pointsareplacedon regulargrid points.
The / &É0/.�3 -planeis the focal plane. New views canbe renderedby intersectingeachviewing
ray of a virtual camerawith the two planesat / &É0/.�0ý'Ô0ý)N3 . The resultingradianceis a look-
up into the regular grid. For rayspassingin betweenthe / &É0/.�3 and / '102)43 grid coordinatesan
interpolationis appliedthatwill degradetherenderingqualitydependingonthescenegeometry.
In fact, the lightfield containsan implicit geometricalassumption,i.e. the scenegeometryis
planarandcoincideswith thefocal plane.Deviation of thescenegeometryfrom thefocal plane
causesimagedegradation(i.e. blurring or ghosting). To usehand-heldcameraimages,the
solutionproposedin [12] consistsof rebinningtheimagesto theregulargrid. Thedisadvantage
of this rebinningstepis that the interpolatedregular structurealreadycontainsinconsistencies
andghostingartifactsbecauseof errorsin thescantilyapproximatedgeometry. Duringrendering
theeffectof ghostingartifactsis repeatedsoduplicateghostingeffectsoccur.

Rendering fr om recordedimages Our goalis to overcometheproblemsdescribedin thelast
sectionby relaxingtherestrictionsimposedby theregularlightfield structureandto renderviews
directly from thecalibratedsequenceof recordedimageswith useof local depthmaps.Without
loosingperformancetheoriginal imagesaredirectlymappedontooneor moreplanesviewedby
avirtual camera.

To obtainahigh-qualityimage-basedscenerepresentation,weneedmany viewsfrom ascene
from many directions.For this, we canrecordanextendedimagesequencemoving thecamera
in azigzaglikemanner. Thecameracancrossits own moving pathseveraltimesor at leastgets
closeto it. To obtaina goodquality structure-and-motionestimationfrom this typeof sequence
it is importantto usethe extensionsproposedin Section3.2 to matchcloseviews that arenot
predecessorsor successorsin the imagestream. To allow to constructthe local geometrical
approximationdepthmapsshouldalsobecomputedasdescribedin theprevioussection.

25

010010010010010010010010010010

212212212212212212212212212212

34
56 78

9:;1;<
=>

?1?@
A1A1A1A1A1A1A1A1A1A1A1AA1A1A1A1A1A1A1A1A1A1A1AA1A1A1A1A1A1A1A1A1A1A1AA1A1A1A1A1A1A1A1A1A1A1AA1A1A1A1A1A1A1A1A1A1A1AA1A1A1A1A1A1A1A1A1A1A1AA1A1A1A1A1A1A1A1A1A1A1AA1A1A1A1A1A1A1A1A1A1A1AA1A1A1A1A1A1A1A1A1A1A1AA1A1A1A1A1A1A1A1A1A1A1A

B1B1B1B1B1B1B1B1B1B1B1BB1B1B1B1B1B1B1B1B1B1B1BB1B1B1B1B1B1B1B1B1B1B1BB1B1B1B1B1B1B1B1B1B1B1BB1B1B1B1B1B1B1B1B1B1B1BB1B1B1B1B1B1B1B1B1B1B1BB1B1B1B1B1B1B1B1B1B1B1BB1B1B1B1B1B1B1B1B1B1B1BB1B1B1B1B1B1B1B1B1B1B1BB1B1B1B1B1B1B1B1B1B1B1B
C1CDE1EFG1GH

I1I1I1I1I1I1I1I1I1I1I1I1I1I1I1I1I1I1I1II1I1I1I1I1I1I1I1I1I1I1I1I1I1I1I1I1I1I1II1I1I1I1I1I1I1I1I1I1I1I1I1I1I1I1I1I1I1II1I1I1I1I1I1I1I1I1I1I1I1I1I1I1I1I1I1I1II1I1I1I1I1I1I1I1I1I1I1I1I1I1I1I1I1I1I1II1I1I1I1I1I1I1I1I1I1I1I1I1I1I1I1I1I1I1I

J1J1J1J1J1J1J1J1J1J1J1J1J1J1J1J1J1J1J1JJ1J1J1J1J1J1J1J1J1J1J1J1J1J1J1J1J1J1J1JJ1J1J1J1J1J1J1J1J1J1J1J1J1J1J1J1J1J1J1JJ1J1J1J1J1J1J1J1J1J1J1J1J1J1J1J1J1J1J1JJ1J1J1J1J1J1J1J1J1J1J1J1J1J1J1J1J1J1J1JJ1J1J1J1J1J1J1J1J1J1J1J1J1J1J1J1J1J1J1J
mV

m

mL
pi

i

virtual view point

virtual image plane

scene geometry

CV

real cameras

approximated scene geometry L

Figure10: Drawing trianglesof neighboringprojectedcameracentersandapproximatinggeom-
etry by oneplanefor thewholescene,for onecameratriple or by severalplanesfor onecamera
triple.

Fixed plane approximation In a first approach,we approximatethe scenegeometryby a
single plane m by minimizing the leastsquareerror. We map all given cameraimagesonto
plane m andview it througha virtual camera. This can be achieved by directly mappingthe
coordinates? w 0 B w of image Å onto the virtual cameracoordinates� ?LK B K * � � � d w K � ? w B w * � � .
Thereforewecanperformadirectlook-upinto theoriginally recordedimagesanddeterminethe
radianceby interpolatingtherecordedneighboringpixel values.This techniqueis similar to the
lightfield approach[28] which implicitly assumesthefocalplaneastheplaneof geometry. Thus
to constructaspecificview wehaveto interpolatebetweenneighboringviews. Thoseviewsgive
themostsupportto thecolor valueof a particularpixel whoseprojectioncenteris closeto the
viewing ray of this pixel. This is equivalentto thefactthatthoseviews whoseprojectedcamera
centersarecloseto its imagecoordinategive themostsupportto a specifiedpixel. We restrict
the supportto the nearestthreecameras(seeFigure 10). We project all cameracentersinto
thevirtual imageandperforma 2D triangulation.Thentheneighboringcamerasof a pixel are
determinedby thecornersof thetrianglewhich this pixel belongsto. Eachtriangleis drawn as
a sumof threetriangles.For eachcamerawe look up thecolor valuesin theoriginal imagelike
describedaboveandmultiply themwith weight1 at thecorrespondingvertex andwith weight0
at bothothervertices. In between,theweightsareinterpolatedlinearly similar to theGouraud
shading.Within the trianglethe sumof weightsis 1 at eachpoint. The total imageis built up
asa mosaicof thesetriangles.Althoughthis techniqueassumesa very sparseapproximationof
geometry, therenderingresultsshow only smallghostingartifacts(seeexperiments).

26

View-dependentgeometryapproximation Theresultscanbefurther improvedby consider-
ing local depthmaps. Spendingmoretime for eachview, we cancalculatethe approximating
planeof geometryfor eachtrianglein dependenceon theactualview. This improvestheaccu-
racy further as the approximationis not donefor the whole scenebut just for that part of the
imagewhich is seenthroughtheactualtriangle. Thedepthvaluesaregivenasfunctions I w of
thecoordinatesin therecordedimagesI w /8? 0 B 3 . They describethedistanceof apoint to thepro-
jectioncenter. Usingthis depthfunction,we calculatethe3D coordinatesof thosescenepoints
whichhavethesame2D imagecoordinatesin thevirtual view astheprojectedcameracentersof
therealviews. The3D point 	 w which correspondsto view Å canbecalculatedas	 w � & I w / �Ø×§b K 3 Æ�/ b ×Gjíb K 3 9 b\× (30)

where Æ�/NM 3 � OP O P and
& � sign / Ù � w K / b ×øj÷b K 323 with

Ù � w the third row of � w is neededfor a
correctorientation.We caninterpretthepoints 	 w asthe intersectionof the line b K b\× with the
scenegeometry. Knowing the3D coordinatesof trianglecorners,wecandefinea planethrough
themandapplythesamerenderingtechniqueasdescribedabove.

Finally, if the trianglesexceeda given size, they canbe subdivided into four sub-triangles
by splitting the threesidesinto two parts,each. For eachof thesesub-triangles,a separate
approximativeplaneis calculatedin theabovemanner. Wedeterminethemidpointof thesideand
usethesamelook-upmethodasusedfor radiancevaluesto find thecorrespondingdepth.After
that,wereconstructthe3D pointandprojectit into thevirtual cameraresultingin apointnearthe
sideof the triangle. Of course,furthersubdivision canbedonein thesamemannerto improve
accuracy. Especially, if just few trianglescontribute to a singlevirtual view, this subdivision is
really necessary. It shouldbedonein a resolutionaccordingto performancedemandsandto the
complexity of geometry.

Example Wehavetestedourapproacheswith animagesequenceof 187imagesshowinganof-
ficescene.Figure11(top-left)showsoneparticularimage.A digital consumervideocamerawas
sweptfreelyoveraclutteredsceneonadesk,coveringaviewing surfaceof about

* Ã @ . Figure11
(top-right)shows thecalibrationresult. A resultof a renderedview is shown in themiddle-left
part of the figure. The middle-rightpart illustratesthe successof the extendedstructure-and-
motionalgorithm. Featuresthatarelost arepickedup againwhenthey reappearin the images.
In the lower partof Figure11 a detailof a view is shown for thedifferentmethods.In thecase
of oneglobalplane(left image),thereconstructionis sharpwheretheapproximatingplaneinter-
sectstheactualscenegeometry. Thereconstructionis blurredwherethescenegeometrydiverges
from this plane. In the caseof local planes(middle image),at thecornersof the triangles,the
reconstructionis almostsharp,becausetherethescenegeometryis considereddirectly. Within
a triangle,ghostingartifactsoccurwherethescenegeometrydivergesfrom theparticularlocal
plane.If thesetrianglesaresubdivided(right image)theseartifactsarereducedfurther.

In this section,we have shown how theproposedapproachfor modelingfrom imagescould
easilybe extendedto allow the renderingof novel views usinga plenopticor view-dependent
texture/geometryrepresentation.The quality of renderedimagescan be varied by adjusting

27

20 40 60 80 100 120 140 160 180

1000

2000

3000

4000

5000

6000

7000

Figure11: Top: Imageof thedesksequence(left) andsparsestructure-and-motionresult(right).
Middle: Artificial view renderedusing one planeper imagetriple (left) and resultsof point
trackingover thesequence(pointsversusimages)(right). Bottom: Detailsof renderedimages
showing thedifferencesbetweentheapproaches:oneglobalplaneof geometry(left), onelocal
planefor eachimagetriple (middle)andrefinementof local planes(right).

28

the resolutionof the consideredscenegeometry. Up to now, our approachesarecalculatedin
software.But they aredesignedsuchthat,usingalphablendingandtexturemappingfacilitiesof
graphicshardware,renderingcanbedonein real-time.

5.3 Fusionof realand virtual scenes

Anotherinterestingpossibilityofferedby thepresentedapproachis to combinerealandvirtual
sceneelements.This allows to augmentrealenvironmentswith virtual objects.A first approach
consistsof virtualizingtherealenvironmentandthento placevirtual objectsin it. Thiscanread-
ily be doneusingthe techniquespresentedin Section5.1. An exampleis shown in Figure12.
Thelandscapeof Sagalassos(anarchaeologicalsite in Turkey) wasmodeledfrom a dozenpho-
tographstakenfrom anearbyhill. Virtual reconstructionsof ancientmonumentshavebeenmade
basedonmeasurementsandhypothesesof archaeologists.Bothcouldthenbecombinedin asin-
gle virtual world.

Figure12: Virtualizedlandscapeof Sagalassoscombinedwith virtual reconstructionsof monu-
ments.

Augmenting video footage Anotherchallengingapplicationconsistsof seamlesslymerging
virtual objectswith realvideo. In this casetheultimategoal is to make it impossibleto differ-
entiatebetweenrealandvirtual objects.Severalproblemsneedto beovercomebeforeachieving

29

this goal. Amongstthemarethe rigid registrationof virtual objectsinto the real environment,
theproblemof mutualocclusionof realandvirtual objectsandtheextractionof theillumination
distribution of the realenvironmentin orderto renderthevirtual objectswith this illumination
model.

Herewewill concentrateon thefirst of theseproblems,althoughthecomputationsdescribed
in the previous sectionalsoprovide mostof the necessaryinformationto solve for occlusions
andotherinteractionsbetweentherealandvirtual componentsof theaugmentedscene.Accu-
rateregistrationof virtual objectsinto arealenvironmentis still achallengingproblems.Systems
thatfail to dosowill fail to give theusera real-life impressionof theaugmentedoutcome.Since
our approachdoesnot usemarkersor a-priori knowledgeof thesceneor thecamera,this allows
usto dealwith videofootageof unpreparedenvironmentsor archivevideofootage.Moredetails
on thisapproachcanbefoundin [3].

An importantdifferencewith theapplicationsdiscussedin theprevioussectionsis thatin this
caseall framesof the input video sequencehave to be processedwhile for 3D modelingoften
a sparsesetof views is sufficient. Therefore,in this casefeaturesshouldbetrackedfrom frame
to frame. As alreadymentionedin Section3.1 it is importantthat the structureis initialized
from framesthataresufficiently separated.Anotherkey componentis thebundleadjustment.It
doesnot only reducethe frameto framejitter, but removesthe largestpartof theerror that the
structureandmotion approachaccumulatesover thesequence.Accordingto our experienceit
is very importantto extendtheperspective cameramodelwith at leastoneparameterfor radial
distortionto obtainanundistortedmetricstructure(this will beclearlydemonstratedin theex-
ample).Undistortedmodelsarerequiredto positionlargervirtual entitiescorrectlyin themodel
andto avoid drift of virtual objectsin theaugmentedvideosequences.Notehoweverthatfor the
renderingof thevirtual objectsthecomputedradialdistortioncanmostoftenbeignored(except
for sequenceswhereradialdistortionis immediatelynoticeablefrom singleimages).

examples A first set of experimentswas carriedout on video sequencesof the Béguinage
in Leuven (the sameas in Figure3). The sequencewasrecordedwith a digital camcorderin
progressive-scanmodeto avoid interlacingproblems.Oncethe structureandmotion hasbeen
computed,thenext stepconsistsof positioningthevirtual objectswith respectto therealscene.
This processis illustratedin Figure13. Thevirtual objectsarepositionedwithin thecomputed
3D structure. To allow a precisepositioning,feedbackis immediatelygiven by renderingthe
virtual object in someselectedkey-frames. After satisfactoryplacementof eachsinglevirtual
object the computedcameracorrespondingto eachimageis usedto renderthe virtual objects
on top of the video. Anti-aliasing can be obtainedby merging multiple views of the virtual
objectsobtainedwith a smalloffseton theprincipalpoint. Someframesof theBéguinagevideo
sequenceaugmentedwith acubearealsoshown in Figure13.

Anotherexamplewasrecordedat Sagalassosin Turkey, wherethe footageof the ruins of
an ancientfountainwastaken. The fountainvideo sequenceconsistsof 250 frames. A large
part of the original monumentis missing. Basedon resultsof archaeologicalexcavationsand
architecturalstudies,it waspossibleto generatea virtual copy of the missingpart. Using the

30

Figure13: Béguinage sequence:positioningof virtual object(top), framesof videoaugmented
with cube(bottom).

31

proposedapproachthevirtual reconstructioncouldbeplacedbackon theremainsof theoriginal
monument,at least in the recordedvideo sequence.This material is of great interestto the
archaeologists,not only for educationanddissemination,but alsofor fund raisingto achieve a
real restorationof the fountain. The top part of Figure14 shows a top view of the recovered
structurebeforeandafterbundle-adjustment.Besidesthe largerreconstructionerror it canalso
be noticedthat the non-refinedstructureis slightly bent. This effect mostly comesfrom not
taking the radial distortion into accountin the initial structurerecovery. Therefore,a bundle
adjustmentthatdid not modelradialdistortionwould not yield satisfyingresults.In therestof
Figure14 someframesof theaugmentedvideoareshown.

6 Conclusion

In this papera completesystemfor visual modelingwith a hand-heldcamerawaspresented.
The systemcombinesdifferent componentsthat graduallyretrieve all the information that is
necessaryto constructvisualmodelsfrom images.Automaticallyextractedfeaturesaretracked
or matchedbetweenconsecutive views andmulti-view relationsarerobustly computed.Based
on this the projective structureandmotion is determinedandsubsequentlyupgradedto metric
throughself-calibration.Bundle-adjustmentis usedto refinetheresults.Then,imagepairsare
rectifiedandmatchedusinga stereoalgorithmanddenseandaccuratedepthmapsareobtained
by combiningmeasurementsof multiplepairs.Fromtheseresultsdifferenttypesof visualmod-
els canbe obtained. First the traditionalapproachthat consistsof constructinga textured3D
meshwaspresented,thenan image-basedapproachwasdescribedandextendedto yield both
view-dependentgeometryandtexture. This lastapproachallows to efficiently capturevisually
complex scenes.It wasalsoshown that the proposedapproachcould be usedto combinereal
andvirtual scenesin videosequences.

Acknowledgement

Part of this researchwas carriedout in collaborationwith BennoHeigl and colleaguesfrom
the university of Erlangen-N̈urnberg. Marc Pollefeys andKurt Cornelisarerespectively post-
doctoralfellow andresearchassistantof theFundfor ScientificResearch- Flanders(Belgium).
Thefinancialsupportof theFWO projectG.0223.01,theITEA BEYOND projectandtheEuro-
peanprojectsVibes,InView andStararegratefullyacknowledged.

References

[1] P. Beardsley, A. ZissermanandD. Murray, “SequentialUpdatingof Projective andAffine
Structurefrom Motion”, International Journal of ComputerVision (23), No. 3, Jun-Jul
1997,pp.235-259.

[2] J.-X. Chai, X. Tong, S.-C. Chan, H.-Y. Shum, “Plenoptic Sampling”, Proc. Siggraph,
pp.307-318,2000.

32

Figure14: Fusionof realandvirtual fountainparts.Top: structure-and-motionrecovery before
andafterbundleadjustment.Bottom: 6 of the250framesof thefusedvideosequence

33

[3] K. Cornelis,M. Pollefeys,M. VergauwenandL. VanGool, “AugmentedRealityfrom Un-
calibratedVideoSequences”,In M. Pollefeys, L. VanGool, A. Zisserman,A. Fitzgibbon
(Eds.),3D Structure fromImages- SMILE2000, LectureNotesin ComputerScience,Vol.
2018,pp.150-167.Springer-Verlag,2001.

[4] Cox,I., Hingorani,S.,Rao,S.,1996,A MaximumLikelihoodStereoAlgorithm,Computer
VisionandImageUnderstanding,Vol. 63,No. 3.

[5] B. CurlessandM. Levoy, “A VolumetricMethodfor BuildingComplex ModelsfromRange
Images”Proc.SIGGRAPH’96, pp.303–312,1996.

[6] P. Debevec, C. Taylor and J. Malik, “Modeling and RenderingArchitecturefrom Pho-
tographs:A Hybrid Geometry-and Image-BasedApproach”,Proc. SIGGRAPH’96, pp.
11–20,1996.

[7] Falkenhagen,L., 1997,HierarchicalBlock-BasedDisparityEstimationConsideringNeigh-
bourhoodConstraints.ProceedingsInternationalWorkshopon SNHC and 3D Imaging,
Rhodes,Greece,pp.115-122.

[8] O. Faugeras,“What canbeseenin threedimensionswith anuncalibratedstereorig”, Com-
puter Vision - ECCV’92, LectureNotesin ComputerScience,Vol. 588, Springer-Verlag,
pp.563-578,1992.

[9] O. Faugeras,Q.-T. Luong and S. Maybank. “Cameraself-calibration: Theory and ex-
periments”,ComputerVision - ECCV’92, LectureNotesin ComputerScience,Vol. 588,
Springer-Verlag,pp.321-334,1992.

[10] M. FischlerandR. Bolles,“RANdom SAmplingConsensus:a paradigmfor modelfitting
with applicationto imageanalysisandautomatedcartography”,Commun.Assoc.Comp.
Mach., 24:381-95,1981.

[11] A. Fitzgibbon and A. Zisserman,“Automatic camerarecovery for closedor open im-
agesequences”,ComputerVision – ECCV’98, vol.1, LectureNotesin ComputerScience,
Vol. 1406,Springer-Verlag,1998.pp.311-326,1998.

[12] S. Gortler, R. Grzeszczuk,R. Szeliski and M. F. Cohen,“The Lumigraph”, Proc. SIG-
GRAPH’96, pp43–54,ACM Press,New York, 1996.

[13] C. Harris andM. Stephens,“A combinedcornerandedgedetector”,Fourth Alvey Vision
Conference, pp.147-151,1988.

[14] R. Hartley, R. Gupta,andT. Chang.“Stereofrom uncalibratedcameras”.Proc.Conference
ComputerVision andPatternRecognition,pp.761-764,1992.

[15] R.Hartley, “Euclideanreconstructionfrom uncalibratedviews”, in : J.L.Mundy, A. Zisser-
man,andD. Forsyth(eds.),Applicationsof Invariancein ComputerVision, LectureNotes
in ComputerScience,Vol. 825,Springer-Verlag,pp.237-256,1994.

34

[16] R. Hartley, “In defenseof theeight-pointalgorithm”. IEEE Trans.on PatternAnalysisand
MachineIntelligence, 19(6):580-593,June1997.

[17] R. Hartley and P. Sturm, “Triangulation”, ComputerVision and Image Understanding,
68(2):146-157,1997.

[18] R.Hartley, Chirality InternationalJournalof ComputerVision, 26(1):41-61,January1998.

[19] B. Heigl, R. Koch, M. Pollefeys, J. Denzlerand L. Van Gool, PlenopticModeling and
Renderingfrom ImageSequencestaken by Hand-heldCamera,Proc.DAGM’99, pp.94-
101.

[20] A. HeydenandK. Åström,“EuclideanReconstructionfrom ConstantIntrinsicParameters”
Proc. 13th InternationalConferenceon Pattern Recognition, IEEE ComputerSoc.Press,
pp.339-343,1996.

[21] A. HeydenandK. Åström,“EuclideanReconstructionfrom ImageSequenceswith Varying
andUnknown Focal Length and Principal Point”, Proc. IEEE Conferenceon Computer
VisionandPatternRecognition, IEEE ComputerSoc.Press,pp.438-443,1997.

[22] F. Kahl, “Critical MotionsandAmbiuousEuclideanReconstructionsin Auto-Calibration”,
Proc. ICCV, pp.469-475,1999.

[23] Koch,R.,1996,AutomatischeOberflachenmodellierungstarrerdreidimensionalerObjekte
ausstereoskopischenRundum-Ansichten,PhD thesis,University of Hannover, Germany,
alsopublishedasFortschritte-BerichteVDI, Reihe10,Nr.499,VDI Verlag,1997.

[24] R. Koch,M. Pollefeys andL. VanGool, Multi Viewpoint Stereofrom UncalibratedVideo
Sequences.Proc.EuropeanConferenceonComputerVision, pp.55-71.Freiburg, Germany,
1998.

[25] R. Koch,M. Pollefeys,B. Heigl, L. VanGool andH. Niemann.“Calibrationof Hand-held
CameraSequencesfor PlenopticModeling”, Proc.ICCV’99(internationalConferenceon
ComputerVision), pp.585-591,Corfu (Greece),1999.

[26] R. Koch,B. Heigl, M. Pollefeys,L. VanGoolandH. Niemann,“A GeometricApproachto
Lightfield Calibration”,Proc.CAIP99, LNCS1689,Springer-Verlag,pp.596-603,1999.

[27] S. LaveauandO. Faugeras,“OrientedProjective Geometryfor ComputerVision”, in : B.
Buxton andR. Cipolla (eds.),ComputerVision - ECCV’96, LectureNotesin Computer
Science,Vol. 1064,Springer-Verlag,pp.147-156,1996.

[28] M. Levoy andP. Hanrahan,“Lightfield Rendering”,Proc.SIGGRAPH’96, pp31–42,ACM
Press,New York, 1996.

[29] L. McMillan and G. Bishop, “Plenoptic modeling: An image-basedrenderingsystem”,
Proc.SIGGRAPH’95, pp.39-46,1995.

35

[30] E. Ofek,E. Shilat,A. RappopportandM. Werman,“Highlight andReflectionIndependent
MultiresolutionTexturesfrom ImageSequences”,IEEE ComputerGraphicsandApplica-
tions, vol.17(2), March-April 1997.

[31] M. Pollefeys, “Self-calibrationandmetric3D reconstructionfrom uncalibratedimagese-
quences”,Ph.D.dissertation,ESAT-PSI,K.U.Leuven,1999.

[32] M. Pollefeys, R. Koch andL. Van Gool, “Self-CalibrationandMetric Reconstructionin
spiteof VaryingandUnknown InternalCameraParameters”,Proc. InternationalConfer-
enceon ComputerVision, NarosaPublishingHouse,pp.90-95,1998.

[33] M. Pollefeys, R. Koch andL. Van Gool, ”A simpleandefficient rectificationmethodfor
generalmotion”, Proc.ICCV’99(internationalConferenceon ComputerVision), pp.496-
501,Corfu (Greece),1999.

[34] M. Pollefeys, R. Koch andL. Van Gool. “Self-CalibrationandMetric Reconstructionin
spiteof VaryingandUnknown InternalCameraParameters”,InternationalJournalof Com-
puterVision,32(1),7-25,1999.

[35] M. Pollefeys andL. Van Gool, “Stratified self-calibrationwith the modulusconstraint”,
IEEE transactionson Pattern Analysisand Machine Intelligence. Vol 21, No.8, pp.707-
724,1999.

[36] W. Press,S. Teukolsky and W. Vetterling, Numerical recipesin C: the art of scientific
computing, Cambridgeuniversitypress,1992.

[37] P. Rousseeuw, RobustRegressionandOutlier Detection, Wiley, New York, 1987.

[38] J. Shi and C. Tomasi, “Good Featuresto Track”, Proc. IEEE Conferenceon Computer
VisionandPatternRecognition (CVPR’94), pp.593- 600,1994.

[39] C. Slama, Manual of Photogrammetry, American Society of Photogrammetry, Falls
Church,VA, USA, 4thedition,1980.

[40] P. Sturm,“Critical Motion Sequencesfor MonocularSelf-CalibrationandUncalibratedEu-
clideanReconstruction”,Proc.1997ConferenceonComputerVisionandPatternRecogni-
tion, IEEEComputerSoc.Press,pp.1100-1105,1997.

[41] P. Sturm,“Critical Motion Sequencesfor MonocularSelf-CalibrationandUncalibratedEu-
clideanReconstruction”,Proc.1997ConferenceonComputerVisionandPatternRecogni-
tion, IEEEComputerSoc.Press,pp.1100-1105,1997.

[42] P. Sturm,“Critical Motion Sequencesfor theSelf-Calibrationof CamerasandStereoSys-
temswith VariableFocalLength”, In Proc.BMVC, 1999.

[43] C. TomasiandT. Kanade,“Shapeandmotion from imagestreamsunderorthography:A
factorizationapproach”,InternationalJournalof ComputerVision, 9(2):137-154,1992.

36

[44] P. Torr, Motion Segmentationand Outlier Detection, PhD Thesis,Dept. of Engineering
Science,Universityof Oxford,1995.

[45] B. Triggs,“The AbsoluteQuadric”,Proc.1997ConferenceonComputerVisionandPattern
Recognition, IEEE ComputerSoc.Press,pp.609-614,1997.

[46] B. Triggs, P. McLauchlan,R. Hartley, A. Fiztgibbon,“Bundle Adjustment– A Modern
Synthesis”,In B. Triggs,A. Zisserman,R. Szeliski(Eds.),Vision Algorithms:Theoryand
Practice, LNCSVol.1883,pp.298-372,Springer-Verlag,2000.

[47] G. Turk andM. Levoy ”ZipperedPolygonMeshesfrom RangeImages”Proceedingsof
SIGGRAPH’94 pp.311-318.

[48] T. TuytelaarsandL. Van Gool ”Wide BaselineStereobasedon Local, Affinely invariant
Regions”British MachineVisionConference,pp.412-422,2000.

[49] R. Willson, Modelingand Calibration of AutomatedZoomLenses, Ph.D. thesis,Depart-
mentof ElectricalandComputerEngineering,Carnegie Mellon University, January1994.

[50] Z. Zhang,R. Deriche,O. FaugerasandQ.-T. Luong,“A robusttechniquefor matchingtwo
uncalibratedimagesthroughthe recovery of the unknown epipolargeometry”,Artificial
IntelligenceJournal, Vol.78,pp.87-119,October1995.

37

Acquisition and Visualization of
Surface Light Fields

SIGGRAPH 2001 Course 46 Notes

Session 4:

Recovering Reflectance Models of Real Scenes from Photographs

Yizhou Yu
University of Illinois at Urbana Champaign

1

Yizhou Yu

Recovering and Synthesizing
Lighting Independent

Appearance Models from Images

Yizhou Yu
Department of Computer Science

University of Illinois at Urbana-Champaign

SIGGRAPH 2001 Course on
Surface Light Fields

Yizhou Yu

Lighting Independent Appearance

• BRDFs
– surface microstructure

• Reflectance maps
– heterogeneous surface microstructure

• Bump/displacement maps
– heterogeneous surface mesostructure

• Bidirectional texture functions
– both microstructure and mesostructure

2

Yizhou Yu

Why Lighting Independent Models from
Images ?

• Re-rendering under novel illumination

• Re-rendering with novel scene composition

• Friendly interface to the traditional rendering
pipeline

Yizhou Yu

Recovering Reflectance from Images

• Using parametric BRDF models for compact
represention
– Only a sparse set of input images are necessary
– Recover reflectance properties for multiple objects in a

mutual illumination environment

5:00am 6:00am 7:00am 10:00am

3

Yizhou Yu

The Problem

• Forward Problem: Global Illumination
– Couple lighting and reflectance to generate images

• Backward Problem: Inverse Global Illumination
– Factorize images into lighting and reflectance

Illumination Reflected Light

Reflectance

Yizhou Yu

Global Illumination

Reflectance
 Properties Images

Geometry Light Sources

Light
Transport

4

Yizhou Yu

Inverse Global Illumination

Reflectance
 Properties Images

Geometry Light Sources

Yizhou Yu

Input Images

Every surface should be covered by at least one photograph
A specular highlight should be captured for every specular surface

5

Yizhou Yu

Camera Radiance Response Curve

• Pixel brightness value is a
nonlinear function of
radiance.
– Debevec & Malik[Siggraph 97]

gives a method to recover this
nonlinear mapping.

Radiance

Intensity
Saturation

Yizhou Yu

In Detail ...

6

Yizhou Yu

Recovered Geometry and Camera Pose

Geometry should be properly segmented with each region
having approximately uniform specular component.

Yizhou Yu

Light Sources

Spherical light sources are easier to model
Light source intensity can be calibrated from dynamic range images

7

Yizhou Yu

A Comparison between Two Synthetic
Images

Hand-crafted Recovered

Yizhou Yu

Lambertian Surfaces under
Mutual Illumination

∑+=
j

ijjiii FBEB ρ ∑+=
j

ijjiii FBEB ρ

• Bi, Bj, Ei measured
• Form-factor Fij known
• Solve for diffuse

albedo iρ

iB

jB
ijF

Source

Target

8

Yizhou Yu

Parametric BRDF Model [Ward 92]

Isotropic Kernel

Anisotropic Kernel

N
Hiθ

δ
rθ

),(Θ+ αρ
π
ρ vKs

d

2

22

 4
]/tan[exp

coscos
1

),(
απ

αδ
θθ

α −=Θ
ri

K v

yx

yx

ri

K
ααπ

αφαφδ
θθ

α
 4

)]/sin/cos(tan[exp

coscos
1),(

22222 +−
=Θv

(3 parameters)

(5 parameters)

Yizhou Yu

Non-diffuse Surfaces under
Direct Illumination

2

,,
)),((min arg iisi

i

d
i IKIL

sd

Θ−−∑ αρ
π
ρ

αρρ

v
v

2

,,
)),((min arg iisi

i

d
i IKIL

sd

Θ−−∑ αρ
π
ρ

αρρ

v
v

N
H

iisi
d

i IKIL)),((Θ+= αρ
π
ρ v

iisi
d

i IKIL)),((Θ+= αρ
π
ρ v

P1P2
P1

P2

9

Yizhou Yu

Non-diffuse Surfaces under
Mutual Illumination

• Problem:
LPiAj is not known.
(unlike diffuse case,
where LPiAj = LCkAj)

• Solution:
iterative estimation

Cv

Ck

A j

Pi

LPiA j

LCk A j

LCvPi

Source

Target

Yizhou Yu

Inverse Global Illumination
• Detect specular highlights on the surfaces.
• Choose sample points inside and around highlights.
• Build links between sample points and facets in the

environment
• Assign to each facet one photograph and one average

radiance value
• Assign zero to Delta_S at each link.
• For iter = 1 to n

– For each link, use its Delta_S to update its radiance value.
– For each surface having highlights, optimize its BRDF parameters.
– For each link, estimate its Delta_S with the new BRDF parameters.

• End

10

Yizhou Yu

Recovering Diffuse Albedo Maps

• Specular properties assumed uniform across
each surface, but diffuse albedo allowed to vary.

• Subtract specular
component

• Recover pointwise
diffuse albedo

Yizhou Yu

Results

• A simulated cubical room

11

Yizhou Yu

Results for the Simulated Case

Diffuse Albedo

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

1 2 3 4 5 6
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

1 2 3 4 5 6

Specular Roughness

Yizhou Yu

Results

• A real conference room

12

Yizhou Yu

Real vs. Synthetic for Original Lighting
Real

Synthetic

Yizhou Yu

Diffuse Albedo Maps of Identical
Posters in Different Positions

Poster A Poster B Poster C

13

Yizhou Yu

Inverting Color Bleed

Input Photograph Output Albedo Map

Yizhou Yu

Real vs. Synthetic for Novel Lighting

Real

Synthetic

14

Yizhou Yu

Modeling Outdoor Illumination

• The sun
– Diameter 31.8’ seen from the earth.

• The sky
– A hemispherical area light source.

• The surrounding environment
– May contribute more light than the

sky on shaded side.

Yizhou Yu

A Recovered Sky Radiance Model

) cos) exp(1))(/cos exp(1 Lvz(2 γγβ edcba f +++) cos) exp(1))(/cos exp(1 Lvz(2 γγβ edcba f +++

15

Yizhou Yu

Coarse-grain Environment Radiance Maps

• Partition the lower hemisphere
into small regions

• Project pixels into regions and
obtain the average radiance

Yizhou Yu

Comparison with Real Photographs

Synthetic Real

16

Yizhou Yu

Geometry Segmentation
from “Extracting Objects from Range and Radiance Images”
by Y. Yu, A. Ferencz and J. Malik, to appear in IEEE TVCG

• Segment geometry into individual objects for
surface fitting and manipulation

• Segment geometry into regions with
approximately uniform specular components
for BRDF recovery

• Related work on range image segmentation
– [Hoffman & Jain 87], [Besl & Jain 88], [Newman

Flynn & Jain 93], [Leonardis, Gupta & Bajcsy 95]

Yizhou Yu

Image Segmentation as Graph Partitioning
Build a weighted graph G=(V,E) from image

V: image pixels

E: connections between
pairs of nearby pixels

region
 same the tobelong

j& iy that probabilit :ijW

Partition graph so that similarity within group is large and
similarity between groups is small -- Normalized Cuts
Approximate solution from a generalized eigenvalue
problem [Shi&Malik 97]

17

Yizhou Yu

3D Point Cloud Segmentation: Graph
Partitioning

• Graph Setup
– Nodes: Clusters of Local Points
– Edges: Connections in 3D Neighborhood
– Weights:),(),(),(vuPvuSvuw ⋅=

onsDistributiGaussian areBoth
Proximity :),(

Intensity and Normalin Similarity :),(
vuP
vuS

u

v

),(vuw

Yizhou Yu

Segmentation Results

18

Yizhou Yu

Models of Individual Objects

Yizhou Yu

Texture-Mapping and Object Manipulation

Original Configuration Novel Configuration

19

Yizhou Yu

More Images with Relocated Objects

Yizhou Yu

Synthesizing Bidirectional Texture
Functions for Real-World Surfaces

Yizhou Yu
Univ. of Illinois at

Urbana-Champaign

Xinguo Liu
Microsoft China
Zhejiang Univ.

Heung-Yeung Shum

Microsoft Research

SIGGRAPH 01

20

Yizhou Yu

Bidirectional Texture Functions

• A collection of images of the same material
surface
– A mapping from the 4D space of lighting and viewing

directions onto the space of all 2D images.

• Model the visual effects from small-scale
geometric details (3D textures)
– such as shadowing, occlusion and spatially varying

normal orientations.

• Model spatially varying reflectance properties.

Yizhou Yu

Recovering Height from Shading

Input: registered images with
a varying lighting direction

Recovered Height Field

Synthesized Height Field

21

Yizhou Yu

Template-Based Texture Synthesis

Template Image

Reference Image Synthesized Image

Yizhou Yu

Bump Mapping vs. BTF Mapping

Bump Mapping BTF Mapping

22

Yizhou Yu

Two Synthetic Images with BTF Mapping

To appear in the SIGGRAPH conference proceedings

Inverse Global Illumination: Recovering Reflectance Models of Real
Scenes from Photographs

Yizhou Yu, Paul Debevec, Jitendra Malik, and Tim Hawkins
�

Computer Science Division
University of California at Berkeley

ABSTRACT

In this paper we present a method for recovering the reflectance
properties of all surfaces in a real scene from a sparse set of pho-
tographs, taking into account both direct and indirect illumination.
The result is a lighting-independent model of the scene’s geom-
etry and reflectance properties, which can be rendered with ar-
bitrary modifications to structure and lighting via traditional ren-
dering methods. Our technique models reflectance with a low-
parameter reflectance model, and allows diffuse albedo to vary arbi-
trarily over surfaces while assuming that non-diffuse characteristics
remain constant across particular regions. The method’s input is a
geometric model of the scene and a set of calibrated high dynamic
range photographs taken with known direct illumination. The al-
gorithm hierarchically partitions the scene into a polygonal mesh,
and uses image-based rendering to construct estimates of both the
radiance and irradiance of each patch from the photographic data.
The algorithm computes the expected location of specular high-
lights, and then analyzes the highlight areas in the images by run-
ning a novel iterative optimization procedure to recover the diffuse
and specular reflectance parameters for each region. Lastly, these
parameters are used in constructing high-resolution diffuse albedo
maps for each surface.

The algorithm has been applied to both real and synthetic data,
including a synthetic cubical room and a real meeting room. Re-
renderings are produced using a global illumination system under
both original and novel lighting, and with the addition of synthetic
objects. Side-by-side comparisons show success at predicting the
appearance of the scene under novel lighting conditions.

CR Categories: I.2.10 [Artificial Intelligence]: Vision and
Scene Understanding—modeling and recovery of physical at-
tributes I.3.7 [Computer Graphics]: Three-dimensional Graphics
and Realism—color, shading, shadowing, and texture I.3.7 [Com-
puter Graphics]: Three-Dimensional Graphics and Realism—
Radiosity I.4.8 [Image Processing]: Scene Analysis—Color, pho-
tometry, shading

Keywords: Global Illumination, Image-Based Modeling and Ren-
dering, BRDF Models, Reflectance Recovery, Albedo Maps, Radi-
ance, Radiosity, Rendering

�
Email:

�
yyz,debevec,malik,tsh � @cs.Berkeley.edu, yizhouy@acm.org,

Website: http://www.cs.berkeley.edu/ � �
yyz,debevec,malik,tsh �

1 Introduction

Computer graphics is being increasingly used to visualize real ob-
jects and environments. Applications in entertainment, architec-
ture, interior design, virtual reality, and digital museums often re-
quire that aspects of the real world be rendered realistically from
novel viewpoints and/or under novel illumination. For example,
one would want to see how a room in a house would look like with
different lighting, or how a statue would look at various times of
day in a different wing of a museum. Lastly, one might want to
realistically render a film location in different lighting, and add in
digital props and characters, with the expectation that the rendered
results would be the same as what would have happened had it all
been for real.

Work in image-based modeling and rendering e.g. [18, 3, 22,
19, 12, 9, 6, 29]) has shown that photographs of a scene can be
used along with geometry to produce realistic renderings of dif-
fuse scenes under the original lighting conditions. However, chal-
lenges remain in making modifications to such scenes. Whether it is
changing the geometry or changing the lighting, generating a new
rendering requires re-computing the interaction of light with the
surfaces in the scene. Computing this interaction requires know-
ing the reflectance properties (diffuse color, shininess, etc.) of each
surface. Unfortunately, such reflectance property information is not
directly available from the scene geometry or from photographs.

Considerable work (e.g. [32, 16, 5, 27, 21]) has been done to es-
timate reflectance properties of real surfaces in laboratory settings
from a dense set of measurements. However, reflectance properties
of real scenes are usually spatially varying, and typically change
with use and age, making a priori laboratory measurements im-
practical. It would clearly be preferable to estimate the reflectance
properties of an entire scene at once, with the surfaces being illumi-
nated in situ rather than as isolated samples, and from a relatively
sparse set of photographs. This is difficult for two reasons.

The first is that we wish to use only a sparse set of photographs
of the scene, rather than exhaustively photographing every point
of every surface from a dense set of angles. With such a set of
photographs, we can expect to observe each surface point from
only a small number of angles. As a result, there will be too little
data to determine fully general bi-directional reflectance distribu-
tion functions (BRDFs) for each surface. We address this problem
in two ways. First, we limit ourselves to recovering low-parameter
reflectance models of the surfaces in the scene. Second, we as-
sume that the scene can be decomposed into areas with related re-
flectance properties. Specifically, we allow the diffuse reflectance,
or albedo, of the object to vary arbitrarily over any surface; the es-
timated albedo is computed as an image called an albedomap1. In
contrast, we require that the directional reflectance properties (such
as specular reflectance and roughness) remain constant over each
area. In this work, such areas are specified as part of the geometry

1The commonly used term texture map is sometimes used to refer to
this same concept. However, texture maps are also sometimes used to store
surface radiance information, which is not lighting-independent.

To appear in the SIGGRAPH conference proceedings

recovery process.
The second problem we face is that in a real scene, surfaces will

exhibit mutual illumination. Thus, the light that any particular sur-
face receives will arrive not just from the light sources, but also
from the rest of the environment through indirect illumination. As
a result, the incident radiance of an observed surface is a complex
function of the light sources, the geometry of the scene, and the
as-yet-undetermined reflectance properties of all of the scene’s sur-
faces. In this work, we use radiance data from photographs and
image-based rendering to estimate the incident radiances of sur-
faces in the scene. This allows us to estimate the reflectance prop-
erties of the surfaces in the scene via an iterative optimization pro-
cedure, which allows us to re-estimate the incident radiances. We
refer to this procedure as inverseglobal illumination.

Addressing these two problems makes it possible to robustly re-
cover reflectance parameters from the limited radiance information
present in a sparse set of photographs, and the accommodations
made are appropriate for a wide variety of real scenes. Even when
they are not met, the algorithm will compute the reflectance prop-
erty parameters that best fit the observed image data, which in many
cases can still yield a visually acceptable result.

The input to our algorithm is a geometric model of the scene, a
set of radiance maps taken under known direct illumination, and
a partitioning of the scene into areas of similar non-diffuse re-
flectance properties. The algorithm outputs a set of high-resolution
albedo maps for the surfaces in the scene along with their specular
reflectance properties, yielding a traditional material-based model.
This output is readily used as input to traditional rendering algo-
rithms to realistically render the scene under arbitrary lighting con-
ditions. Moreover, modifications to the scene’s lighting and geom-
etry and the addition of synthetic objects is easily accomplished
using conventional modeling methods.

Reflectance
Properties

Lighting

Radiance
Maps

Global
Illumination

Geometry

Reflectance
Properties

Lighting

Radiance
Maps

Geometry

Inverse Global
Illumination

Figure 1: Overview of the Method Thisfigure showstherelation-
ship betweenglobal illumination and inverseglobal illumination.
Global illumination usesgeometry, lighting, and reflectanceprop-
ertiesto computeradiancemaps(i.e. renderedimages),andinverse
global illumination usesgeometry, lighting, andradiancemapsto
determinereflectanceproperties.

1.1 Overview

The rest of this paper is organized as follows. In the next section
we discuss work related to this paper. Section 3 describes inverse
radiosity, a stepping stone to the full algorithm which considers
diffuse scenes. Section 4 presents a technique for recovering spec-
ular reflectance properties for homogeneous surfaces considering
direct illumination only. Section 5 describes how these two tech-
niques are combined to produce our inverse global illumination al-
gorithm. Section 6 completes the technical discussion by describ-
ing how high-resolution albedo maps are derived for the surfaces
in the scene. Section 7 presents reflectance recovery results from

both real and synthetic data, a description of our data acquisition,
and synthetic renderings which are compared to real photographs.
Section 8 presents some conclusions and avenues for future work.

2 Background and Related Work

The work we present in this paper has been made possible by previ-
ous work in BRDF modeling, measurement and recovery, geometry
acquisition, image-based rendering, and global illumination.

In graphics, there is a long history of modeling surface re-
flectance properties using a small number of parameters. Recent ef-
forts in this direction include models introduced in [14, 32, 25, 17].
These models have been shown to yield reasonable approximations
to the reflectance properties of many real materials, and they have
been used to produce realistic renderings.

On the other hand, considerable recent work has presented meth-
ods for measuring and recovering the reflectance properties of
materials using imaging devices. [32] and [16] presented tech-
niques and apparatus for measuring reflectance properties, includ-
ing anisotropic reflection. [5] measured directional reflectance
properties of textured objects. [27] and [21] showed that diffuse
and specular reflectance properties could be recovered from multi-
ple photographs of an object under direct illumination. [36] recov-
ered reflectance properties of isolated buildings under daylight and
was able to re-render them at novel times of day. [7] estimated ma-
terial properties of parts of a scene so that they could receive shad-
ows and reflections from synthetic objects. [10, 20] used a model
of the scene and forward radiosity to estimate diffuse albedos to in-
teractively modify the scene and its lighting. Although mutual illu-
mination has been considered in the problem of shape from shading
[23], it has not yet been fully considered for recovering non-diffuse
reflectance properties in real environments. A survey of some of
the methods is in Marschner [21].

Certain work has shown that changing the lighting in a scene
does not necessarily require knowledge of the surface reflectance
properties – taking linear combinations of a large set of basis im-
ages [24, 35] can yield images with novel lighting conditions.

Recent work in laser range scanning and image-based model-
ing has made it possible to recover accurate geometry of real-world
scenes. A number of robust techniques for merging multiple range
images into complex models are now available [34, 30, 4, 27].
For architectural scenes involving regular geometry, robust pho-
togrammetric techniques requiring only photographs can also be
employed. The model used in this research was constructed using
such a technique from [9]; however, our basic technique can be used
regardless of how the geometry is acquired.

Work in global illumination (e.g. [11, 15, 31, 37]) has produced
algorithms and software to realistically simulate light transport in
synthetic scenes. In this work we leverage the hierarchical subdi-
vision technique [13, 1] to efficiently compute surface irradiance.
The renderings in this paper were produced using Gregory Ward
Larson’s RADIANCE system [33].

Photographs taken by a camera involve nonlinearities from the
imaging process, and do not have the full dynamic range of real
world radiance distributions. In this work we use the high dynamic
range technique in [8] to solve these problems.

3 Inverse Radiosity

Most real surfaces exhibit specular as well as diffuse reflection. Re-
covering both diffuse and specular reflectance models simultane-
ously in a mutual illumination environment is complicated. In this
section, we consider a simplified situation where all surfaces in an
environment are pure diffuse (Lambertian). In this case, the global
illumination problem simplifies considerably and can be treated in

2

To appear in the SIGGRAPH conference proceedings

Light

Camera

H 2H 1

n1 n2

(a) (b) (c)
Figure 2: (a) The lighting and viewing directions at different points on a surface are different with respect to a fixed light source and a fixed
viewpoint. This fact can be used to recover a low-parameter BRDF model for the surface from a single image. ��� ’s and

���
’s are the normals

and halfway vectors between lighting and viewing directions at different locations on the surface. We can infer that surface point ��� with
normal 	
� is close to the center of the highlight, and point ��� with normal 	�� is relatively far away from the center. (b) An example of an
isotropic specular highlight, (c) An example of an anisotropic specular highlight.

the radiosity framework [28]. We define inverseradiosityas recov-
ering the diffuse albedo at each surface patch in the environment,
provided that the geometry, the lighting conditions and the radiance
distribution in the scene are known. In the next section we will
discuss another simple case — recovering more general reflectance
models with specularity considering only direct illumination — and
we address the full problem in Section 5.

In the radiosity framework [28], the surfaces in the environment
are broken into a finite number of patches. The partitioning is as-
sumed to be fine enough that the radiosity and diffuse albedo of
each patch can be treated as constant. For each such patch,

��
����� ��� � � ��� � � � �
(1)

where
��

,
���

, and
� �

are the radiosity, emission, and diffuse albedo,
respectively, of patch � , and

� � �
is the form-factor between patches� and � . The form-factor

� � �
is the proportion of the total power

leaving patch � that is received by patch � . It can be shown that
this is a purely geometric quantity which can be computed from the
known geometry of the environment [28].

We take photographs of the surfaces, including the light sources,
and use a high dynamic range image technique [8] to capture the
radiance distribution. Since Lambertian surfaces have uniform di-
rectional radiance distributions, one camera position is sufficient for
each surface. Then

��
and
��

in Eqn. (1) become known. Form-
factors

� � �
can be derived from the known geometry. Once these

are done,
� ����� ������� � � ! � � � � � � �

. The solution to inverse
radiosity is so simple because the photographs capture the final so-
lution of the underlying light transport among surfaces.

4 Recovering Parameterized BRDFs from
Direct Illumination

Before tackling the general case of reflectance recovery from pho-
tographs of mutually illuminated surfaces with diffuse andspecular
components, we study another special case. Consider a single sur-
face of uniform BRDF which is illuminated by a point light source
in known position and photographed by a camera, also in a known
geometric position with respect to the surface(Fig. 2). Every pixel
in the radiance image provides a measurement of radiance " � of the
corresponding surface point � � in the direction of the camera, and
the known light source position lets us calculate the irradiance # �
incident on that point.

Our objective is to use these data
� " � $ # � � to estimate the BRDF

of the surface. Since the BRDF is a function of four variables (az-
imuth and elevation of incident and viewing directions) it is obvi-

ous that the 2-dimensional set of measurements for a single cam-
era/light source pairing is inadequate to do this in general. How-
ever for many materials it is possible to approximate the BRDF
adequately by a parameterized BRDF model with a small number
of parameters (e.g. Ward [32], Lafortune [17], He [14] etc). We
use Ward’s parameterization in which the BRDF is modeled as the
sum of a diffuse term % &' and a specular term

� ()�� *+$,-�
. Here� .

and
� (

are the diffuse and specular reflectance of the surface, re-
spectively, and

)�� *+$,-�
is a function of vector

,
, the azimuth and

elevation of the incident and viewing directions, and parameterized
by
*

, the surface roughness vector. For anisotropic surfaces
*

has
3 components; for isotropic surfaces

*
has only one component

and reduces to a scalar. The precise functional form of
)�� *+$,-�

in
the two cases may be found in Appendix 1.

This leads us to the following equation for each surface point � � ,
" �
�/� � .0 �1� ()�� *+$,2� � � # � (2)

where " � , # � and
,2�

are known, and the parameters
� .

,
� (

,
*

are
unknowns to be estimated. Depending on whether we are using an
isotropic or anisotropic model for the specular term we have a total
of 3 or 5 unknown parameters, while there are as many constrain-
ing equations as the number of pixels in the radiance image of the
surface patch. By solving a nonlinear optimization problem (see
Appendix 1 for details), we can find the best estimate of

� .
,
� (

,
*

.
There are two important subtleties in the treatment of this op-

timization problem. One is that we need to solve a weighted
least squares problem, otherwise the larger values from the high-
light (with correspondingly larger noise in radiance measurements)
cause a bias in parameter estimation. The second is the use of color
information which needs to be done differently for dielectrics and
metals. Both of these issues are discussed in Appendix 1.

To obtain an obvious global minimum for this optimization prob-
lem and achieve robust parameter recovery, the radiance image
should cover the area that has a specular highlight as well as some
area with very low specular component. If the highlight is missing,
we do not have enough information for recovering specular param-
eters, and can only consider the surface to be diffuse.

5 Recovering Parameterized BRDFs in a
Mutual Illumination Environment

We are now ready to study the general case when the environment
consists of a number of surfaces and light sources with the surface
reflectances allowed to have both diffuse and specular components.

Consider a point � � on a surface patch seen by camera 3�4 (Fig.
3). The radiance from � � in the direction of the camera is the re-

3

To appear in the SIGGRAPH conference proceedings

p
i

j

L L

L

P

C P

i j

A

A

v

C A

i

jk

C

C

v

k

Figure 3: Patch �
�

is in the radiance image captured by camera 3�� .
The specular component at �

�
in the direction of sample point � �

is different from that in the direction of camera 3 � . The difference
is denoted by ��� .

flection of the incident light contributed by all the light sources as
well as all the surrounding surfaces. Eqn. (2) generalizes to

"�� � 	
 � � � � 	
 �1� . ! � "�	
 � �
�
	
 � ��� (! � "�	
 � �) � � 	
 � � $ (3)

where "�� � 	
 is the radiance value in the direction of camera 3�4
at some sample point � � on the surface,

� � � 	
 is the emission in
the direction of camera 3 4 , "�	
 � � is the radiance value along the
direction from patch �

�
to point � � on the surface,

�
	
 � � is the

analytical point-to-patch form-factor [2] between sample point � �
and patch �

�
, and

� () � � 	
 � � is the specular term evaluated at � �
for a viewpoint at camera 3�4 and a light source position at patch
�
�
. The arguments,

*
and
,

, of
)

have been dropped to simplify
notation.

As before, our objective is to estimate
� .

,
� (

, and specular
roughness parameters

*
. Of the other variables in Eqn. (3),� � � 	
 �� for nonsources, and "�� � 	
 can be measured directly

from the radiance image at camera 3 4 . In general, the radiances"�	
 � � cannot be measured directly but have to be estimated iter-
atively. Suppose patch �

�
in the environment appears in another

radiance image taken by camera 3 � (Fig. 3). Only if we assume �
�

is Lambertian, does "�	
 � � in Eqn. (3) equal "�� � � � , the radiance
from �

�
to camera 3 � . Otherwise, the diffuse components will be

equal, but the specular components will differ.

"�	
 � � � "�� � � � � ��� � � 	
 � � (4)

Here ��� � � 	
 � � � ��	
 � � � ��� � � � is the difference between the
specular components ��	
 � � and ��� � � � of the radiances in the two
directions. To compute the specular differences ����� � 	
 � � , we
need the BRDF of �

�
, which is initially unknown. The estima-

tion of ��� (Section 5.1) therefore has to be part of an iterative
framework. Assuming that the dominant component of reflectance
is diffuse, we can initialize the iterative process with ��� �� (this
sets "�	
 � � � "�� � � �).

To recover BRDF parameters for all the surfaces, we need radi-
ance images covering the whole scene. Each surface patch needs
to be assigned a camera from which its radiance image is selected.
At least one specular highlight on each surface needs to be visible
in the set of images, or we will not be able to recover its specular
reflectance and roughness parameters. Each sample point gives an

For each camera position C
For each polygon T

For each light source O
Obtain the intersection P between plane of T and line CO’

(O’ and O are symmetric about T);
Check if P falls inside polygon T;
Check if there is any occlusion between P and O;
Check if there is any occlusion between C and any point

in a local neighborhood of P;
/* A highlight area is detected if P passed all the above tests.*/

End

Figure 4: The specular highlight detection algorithm.

equation similar to Eqn. (3). From these equations, we can set up a
weighted least-squares problem for each surface as in Appendix 1.
During optimization, we need to gather irradiance at each sample
point from the surface patches in the environment. One efficient
way of doing this is to subdivide each surface into a hierarchy of
patches [13, 1] and link different sample points to patches at differ-
ent levels in the hierarchy. The solid angles subtended by the linked
patches at the sample points should always be less than a prescribed
threshold. There is a radiance value from the patch to the sample
point and a ��� associated with each hierarchical link.

For each sample point, we build hierarchical links to a large
number of patches, and gather irradiance from these links. The
amount of memory and computation involved in this process limits
the number of samples for each highlight area. To make a rea-
sonable tradeoff, we note that irradiance from indirect illumination
caused by surrounding surfaces generally has little high-frequency
spatial variation. Because of this, it makes sense to draw two sets
of samples, one sparse set, and one dense set 2. For the samples
in the sparse set, we build hierarchical links and gather irradiance
from the environment as usual. For the samples in the dense set,
only their irradiance from light sources is computed explicitly, their
irradiance from indirect illumination is computed by interpolation.

We are now ready to state the complete inverse global illumi-
nation algorithm. First detect all specular highlight blobs falling
inside the radiance images using knowledge of the positions of the
light sources, the camera poses, and the geometry (Fig. 4). Set the
initial ��� associated with each hierarchical link to zero. We can
then recover an initial estimate of the BRDF parameters for each
surface independently by solving a series of nonlinear optimization
problems. The estimated specular parameters are used to update
all ��� ’s and "�	
 � � ’s associated with the hierarchical links. With
the updated incident radiances, we can go back and re-estimate the
BRDF parameters again. This optimization and update process is
iterated several times to obtain the final solution of the BRDFs for
all surfaces. The overall algorithm is shown in Fig. 5.

5.1 Estimation of ���
Suppose there is a hierarchical link � 	
 � � between a sample point� � and a patch �

�
which is visible to a camera 3 � (Fig. 6). The ���

for � 	
 � � is defined to be the difference of the specular component

in directions ��
�
� � and ��

�
3 � . To estimate this difference, we need

to obtain the specular component along these two directions given
the BRDF parameters of patch �

�
. A one-bounce approximation

of ��� for link � 	
 � � can be obtained by using Monte Carlo ray-
tracing [32]. Because of off-specular components, multiple rays

2We choose the two sets of samples as follows. We first find the center
of the highlight area in the image plane and rotate a straight line around this
center to a number of different positions. The dense set of samples is the set
of points on the surface corresponding to all the pixels on these lines. We
choose the sparse set of samples on each line by separating two consecutive
samples by some fixed distance in the object space.

4

To appear in the SIGGRAPH conference proceedings

Detect specular highlight blobs on the surfaces.
Choose a set of sample points inside and around each highlight

area.
Build hierarchical links between sample points and patches in the

environment and use ray tracing to detect occlusion.
Assign to each patch one radiance image and one average radiance

value captured at the camera position.
Assign zero to ��� at each hierarchical link.
For iter=1 to N

For each hierarchical link,
use its ��� to update its associated radiance value;

For each surface,
optimize its BRDF parameters using the data

from its sample points;
For each hierarchical link,

estimate its ��� with the new BRDF parameters.
End

Figure 5: The InverseGlobal Illumination algorithm.

C k

A j

Q PiAj

Q CkAj

C v

iP

PiA j
l

Figure 6: Random rays are traced around the two cones to obtain a
one-bounce approximation of ��� .

should be traced and the direction of the rays is randomized around
the mirror directions of ��

�
� � and ��

�
3�� , respectively. For each

possible ray direction, the probability density of shooting a ray in
that direction is proportional to

)�� *�� $,2�
where

,
encodes the

incident and outgoing directions. Intuitively, most of the rays fall
inside the two cones � 	
 � � and � � � � � centered at the two mir-
ror directions. The width of each cone depends on the specular
roughness parameters

*��
of patch �

�
. The radiance along each

ray is obtained from the patch hit by the ray. Suppose "����
 � � and"���� � � � are the average radiance values of the rays around the two
cones, respectively, and

� (� � is the specular reflectance of patch
�
�
. Because the average value of Monte Carlo sampling approxi-

mates the total irradiance modulated by
)�� *�� $,2�

, ��� can simply
be estimated as

� (
� �
� "�� �
 � � � "�� � � � � � . This calculation could

be extended to have multiple bounces by using path tracing [15];
we found that the one-bounce approximation was adequate for our
purposes.

5.2 Practical Issues

We do not have a formal characterization of the conditions under
which the inverse global illumination algorithm converges, or of
error bounds on the recovered BRDF parameter values. In practice,
we found it worked well (Section 7). Here we give some heuristic
advice on how to acquire images to obtain good performance.

	 Use multiple light sources. A specular highlight directly
caused by one of the light sources should be captured on each
surface. Having multiple light sources increases the probabil-

ity that this can be achieved, and lets the whole scene receive
more uniform illumination. This also increases the relative
contribution of the diffuse component at any particular sam-
ple point � � , and supports the ��� � initialization, since
highlights from different sources will usually occur at differ-
ent locations on the surface.

	 Useconcentratedlight sources.If the incoming radiance dis-
tribution is not very directional, the specular highlights will be
quite extended and it will be difficult to distinguish the spec-
ular component from the diffuse one.

6 Recovering Diffuse Albedo Maps

In the previous sections, we modeled the reflectance properties as
being uniform for each surface. In this section, we continue to do so
for specular parameters because a small number of views of each
surface does not provide enough information to reliably estimate
specular parameters for each point individually. However, we relax
this constraint on diffuse albedo and model it as a spatially varying
function, an albedomap, on each surface. The diffuse albedo for
any point
 on a surface is computed as:

� . �
 ��� 0�� �
 � # �
 � (5)

where
� . �
 � is the diffuse albedo map, � �
 � is the diffuse radiance

map, and # �
 � is the irradiance map.
Suppose there is an image covering the considered surface which

gives a radiance map " �
 ��� � �
 � � � �
 � where � �
 � is the spec-
ular radiance map seen from the image’s camera position. Then the
diffuse radiance map in Eqn. (5) can be obtained by subtracting
the specular component from each pixel of the radiance map " �
 �
using the specular reflectance parameters already recovered. We
estimate the radiance due to specular reflection as the sum of spec-
ular reflection due to direct and indirect illumination. The specular
reflection due to direct illumination is computed from the knowl-
edge of the direct lighting and the estimated reflectance properties,
and we estimate the indirect specular reflectance by tracing a per-
turbed reflected ray into the environment in a manner similar to that
in Section 5.1.

The irradiance # �
 � can be computed at any point on the surface
from the direct illumination and by using analytical point-to-patch
form-factors [2] as in previous sections of this paper. For efficiency,
we compute the irradiance due to the indirect illumination only at
certain sample points on the surfaces, and interpolate these indirect
irradiance estimates to generate estimates for all surface points
 .
Of course, care must be taken to sufficiently sample the irradiance
in regions of rapidly changing visibility to the rest of the scene.

Something that complicates estimating diffuse albedos in this
manner is that in highlight regions the specular component of the
reflectance � �
 � will be much larger than the diffuse component� �
 � . As a result, relatively small errors in the estimated � �
 � will
cause large relative errors in � �
 � and thus

� . �
 � . However, just as
a person might shift her view to avoid glare while reading a movie
poster, we make use of multiple views of the surface to solve this
problem.

Suppose at a point
 on a surface, we have multiple radiance val-
ues � "�� �
 � � � �
� from different images. The highest value in this
set will exhibit the strongest specular component, so we simply re-
move this value from consideration. For the remaining values, we
subtract the corresponding specular estimates � � �
 � from the ra-
diance values "�� �
 � , to obtain a set of diffuse radiance estimates� � �
 � . We compute a final diffuse radiance component � �
 � as a
weighted average of the � � �
 � , with weights inversely proportional
to the magnitude of the estimated specular components � � �
 � to
minimize the relative error in � �
 � . We also weight the � � �
 �

5

To appear in the SIGGRAPH conference proceedings

values proportionally to the cosine of the viewing angle of the cam-
era in order to reduce the influence of images at grazing angles;
such oblique images typically have poor texture resolution and ex-
hibit particularly strong specular reflection. Since we are combin-
ing information taken from different images, we smooth transitions
at image boundaries using the image blending technique in [9].

Once diffuse albedo maps are recovered, they could be used to
separate the diffuse and specular components in the specular high-
light areas. This would allow recovering more accurate specular pa-
rameters in the BRDF model. In practice, however, we have found
good estimates to be obtained without further refinements.

7 Results

7.1 Results for a Simulated Scene

We first tested our algorithm on a simple simulated cubical room
with mutual illumination. This allowed us to verify the accuracy
of the algorithm and compare its results to ground truth. All the
six surfaces of the room have monochromatic diffuse and specular
components, but each one has a distinct set of parameters. Each of
the surfaces has spatially uniform specularity. We assigned two sur-
faces to be anisotropically specular and added 10-20% zero mean
white noise to the uniform diffuse albedo of two surfaces to sim-
ulate spatial variations. We used the RADIANCE rendering sys-
tem [33] to produce synthetic photographs of this scene. Six of
the synthetic photographs were taken from the center of the cube
with each one covering one of the six surfaces. Another set of six
zoomed-in photographs were taken to capture the highlight areas.
The scene was illuminated by six point light sources so that specu-
lar highlights could be observed on each surface. These twelve im-
ages along with the light source intensity and positions were used to
solve the BRDF parameters. The images of the specular highlights
are shown in Fig. 2(b)-(c). Some of the highlights are visually very
weak, but corresponding parameters can still be recovered numer-
ically. The original and recovered BRDF parameters are given in
Table 1. For the last two surfaces with noisy diffuse albedo, the
recovered albedo values are compared to the true average values.
The total running time for BRDF recovery is about half an hour on
a SGI �� 180MHz workstation.

The numerical errors shown in Table 1 are obtained by com-
paring the recovered parameters with the original ones. There are
three sources of error: BRDF modeling error, rendering error, and
BRDF recovery error. BRDF modeling error comes from the in-
ability of a given BRDF model to capture the behavior of a real
material. By using the same model for recovery that RADIANCE
uses for rendering, BRDF modeling error was eliminated for this
test. However, because RADIANCE computes light transport only
approximately, rendering error is present. We thus cannot deter-
mine the exact accuracy of our BRDF recovery. However, the test
demonstrates that the algorithm works well in practice.

7.2 Results for a Real Scene

In this section we demonstrate the results of running our algorithm
on a real scene. The scene we chose is a small meeting room with
some furniture and two whiteboards; we also decorated the room
with colored cards, posters, and three colored metallic spheres3.
Once the BRDFs of the materials were recovered, we were able to
re-render the scene under novel lighting conditions and with added
virtual objects.

3The spheres were obtained from Baker’s Lawn Ornaments, 570 Berlin
Plank Road, Somerset PA 15501, (814) 445-7028.

� & � � � � � � � � � �
True 0.3 0.08 0.6 0.03 0
Recovered 0.318296 0.081871 0.595764 0.030520 -0.004161
Error(%) 6.10 2.34 0.71 1.73

True 0.1 0.1 0.3
Recovered 0.107364 0.103015 0.300194
Error(%) 7.36 3.02 0.06

True 0.1 0.01 0.1
Recovered 0.100875 0.010477 0.101363
Error(%) 0.88 4.77 1.36

True 0.3 0.02 0.15
Recovered 0.301775 0.021799 0.152331
Error(%) 0.59 8.90 1.55

True 0.2 0.05 0.05
Recovered 0.206312 0.050547 0.050291
Error(%) 3.16 1.09 0.58

True 0.2 0.1 0.05 0.3 45
Recovered 0.209345 0.103083 0.050867 0.305740 44.997876
Error(%) 4.67 3.08 1.73 1.91

Table 1: Comparison between true and recovered BRDF parame-
ters for the six surfaces of a unit cube. The first and last surfaces
have anisotropic specular reflection. They have two more parame-
ters: second roughness parameter 	�
 and the orientation � of the
principal axes in a local coordinate system. The errors shown are
the combined errors from both rendering and recovering stages.

7.2.1 Data Acquisition

We illuminated the scene with three heavily frosted 3-inch diam-
eter tungsten light bulbs. Using high dynamic range photography,
we verified that the lights produced even illumination in all direc-
tions. A DC power source was used to eliminate 60Hz intensity
fluctuations from the alternating current power cycle.

We used a Kodak DCS520 color digital camera for image acqui-
sition. The radiance response curve of the camera was recovered
using the technique in [8]. We used a wide-angle lens with a 75
degree field of view so that we could photograph all the surfaces in
the scene from a few angles with a relatively small number of shots.
Forty high dynamic range radiance images, shown in Fig. 7, were
acquired from approximately 150 exposures. Twelve of the images
were taken specifically to capture specular highlights on surfaces.

The radiance images were processed to correct for radial light
falloff and radial image distortion. Each of these corrections was
modeled by fitting a polynomial of the form ��� � � ��� � � to cali-
bration data captured with the same lens settings used for the scene
images. To reduce glare and lens flare, we shaded the lens from
directly viewing the light sources in several of the images. Re-
gions in the images corresponding to the light stands (which we
did not model) or where excessive remaining glare was apparent
were masked out of the images, and ignored by the algorithm. The
thin cylindrical light stands which appear in the synthetic render-
ings have been added to the recovered model explicitly.

The radiance images were used to recover the scene geometry
and the camera positions (Fig. 8) using the Façade [9] modeling
system. Segmentation into areas of uniform specular reflectance
was obtained by having each polygon of each block in the model
(e.g. the front of each poster, the surface of each whiteboard, the top
of each table) have its own uniform specular reflectance parameters.

The positions and intensities of the three light sources were re-
covered from the final three radiance images. During BRDF re-
covery, the area illumination from these spherical light sources was
computed by stochastically casting several rays to each source.

7.2.2 BRDF Recovery

Given the necessary input data, our program recovered the surface
BRDFs in two stages. In the first stage, it detected all the high-
light regions and recovered parametrized BRDFs for the surfaces.
In this stage, even if a surface had rich texture, only an average dif-

6

To appear in the SIGGRAPH conference proceedings

� .
(red)

� .
(green)

� .
(blue)

� (
(red)

� (
(green)

� (
(blue) 	

whiteboard 0.5794 0.5948 0.6121 0.0619 0.0619 0.0619 0.0137
roundtable top 0.7536 0.7178 0.7255 0.0366 0.0366 0.0366 0.0976

door 0.6353 0.5933 0.5958 0.0326 0.0326 0.0326 0.1271
wall 0.8543 0.8565 0.8036 0.0243 0.0243 0.0243 0.1456

poster 0.1426 0.1430 0.1790 0.0261 0.0261 0.0261 0.0818
red card 0.7507 0.2404 0.3977 0.0228 0.0228 0.0228 0.0714

yellow card 0.8187 0.7708 0.5552 0.0312 0.0312 0.0312 0.1515
teal card 0.4573 0.5951 0.5369 0.0320 0.0320 0.0320 0.1214

lavender card 0.3393 0.3722 0.4437 0.0077 0.0077 0.0077 0.1144
red ball 0 0 0 0.5913 0.1862 0.3112 0

green ball 0 0 0 0.2283 0.3694 0.3092 0
blue ball 0 0 0 0.2570 0.3417 0.4505 0

Table 2: BRDF parameters recovered for the materials in the test room. All of them are isotropic, and most of them are plastic. The balls are
metallic.

fuse albedo was recovered. Surfaces for which no highlights were
visible the algorithm considered diffuse. The second stage used
the recovered specular reflection models to generate diffuse albedo
maps for each surface by removing the specular components.

The running time for each of the two stages was about 3 hours
on a Pentium II 300MHz PC. The results show our algorithm can
recover accurate specular models and high-quality diffuse albedo
maps. Fig. 9 shows how specular highlights on the white board
were removed by combining the data from multiple images. Fig. 10
shows the albedo maps obtained for three identical posters placed at
different places in the room. Although the posters were originally
seen in different illumination, the algorithm successfully recovers
very similar albedo maps for them. Fig. 11 shows that the algorithm
can remove ”color bleeding” effects: colors reflected onto a white
wall from the cards on the table do not appear in the wall’s diffuse
albedo map. Table 2 shows the recovered specular parameters and
average diffuse albedo for a variety of the surfaces in the scene. We
indicated to the program that all the materials are isotropic, and that
the metallic spheres only have ideal specular components4 .

7.2.3 Re-rendering Results

We directly compared synthetic images rendered with our recov-
ered BRDF models to real images. In Fig. 12, we show the com-
parison under the original lighting conditions in which we took the
images for BRDF recovery. In Fig. 13, we show the comparison
under a novel lighting condition obtained by removing two of the
lights and moving the third to a new location, and adding a new
object. There are a few differences between the real and synthetic
images. Some lens flare appears in the real images of both figures,
which we did not attempt to simulate in our renderings. We did
not model the marker trays under the whiteboards, so their shad-
ows do not appear in the synthetic images. In Fig. 13, a synthetic
secondary highlight caused by specular reflection from the adjacent
whiteboard appears darker than the one in the real image, which
is likely due to RADIANCE’s approximations for rendering sec-
ondary specularities. However, in both figures, real and synthetic
images appear quite similar.

Fig 14 shows two panoramic views of the rendered scene. (a)
shows the entire scene rendered with novel lighting. The original
lights were removed and three track lights were virtually installed
on the ceiling to illuminate the posters. Also, a strange chande-

4For surfaces that have only ideal specular reflection, such as mirrors,
there is no diffuse component and the roughness parameter is zero. We can
still recover their specular reflectance �

(
from a single image by noting that

the specular reflectance can be computed as the simple ratio between two
radiance values. One is the radiance value in the image corresponding to
the intersection between the surface and a ray shot from the camera position;
the other is the radiance value of the environment along the reflected ray. In
practice, we shoot a collection of rays from the camera position to obtain
the average reflectance.

lier was placed above the spheres on the table. The new lights
reflect specularly off of the posters and the table. Since the chan-
delier contains a point light source, it casts a hard shadow around
the midsection of the room. The interior of the chandelier shade
is turquoise colored which results in turquoise shadows under the
spheres. A small amount of synthetic glare was added to this image.
(b) shows the result of adding synthetic objects to various locations
in the room, including two chairs, a crystal ball, two metal boxes,
and a floating diamond. In addition, a very large orange sculpture,
was placed at the back of the room. All of the objects exhibit proper
shadows, reflections, and caustics. The sculpture is large enough to
turn the ceiling noticeably orange due to diffuse interreflection. The
video for this paper shows a fly-through of each of these scenes.

8 Conclusions and Future Work

In this paper we have presented a new technique for determining
reflectance properties of entire scenes taking into account mutual
illumination. The properties recovered include diffuse reflectance
that varies arbitrarily across surfaces, and specular reflectance pa-
rameters that are constant across regions. The technique takes as
input a sparse set of geometrically and photometrically calibrated
photographs taken under calibrated lighting conditions, as well as a
geometric model of the scene. The algorithm iteratively estimates
irradiances, radiances, and reflectance parameters. The result is a
characterization of surface reflectance properties that is highly con-
sistent with the observed radiances in the scene. We hope this work
will be a useful step towards bringing visual spaces from the real
world into the virtual domain, where they can be visualized from
any angle, with any lighting, and with additions, deletions, and
modifications according to our needs and imaginations.

There are a few directions for future research. We wish to apply
our technique to more general geometrical and photometric data,
such as multispectral radiance images and geometry accquired from
laser scanners. It would be of significant practical value to be able
to calibrate and use existing or natural illumination in recovering
reflectance properties. The algorithm should be more robust to er-
rors in the geometric model, misregistration of the photographs,
and errors in the light source measurements. It would also be of
theoretical value to obtain conditions under which the algorithm
converges.

Acknowledgments
The authors wish to thank David Culler and the Berkeley NOW (Network of Worksta-
tions, http://now.cs.berkeley.edu/) project, and Tal Garfinkel for his help in using the
NOW to render the video sequences. Thanks to Gregory Ward Larson for advice in us-
ing RADIANCE and estimating reflectance, Carlo Séquin for providing the sculpture
model, and the reviewers for their valuable comments. This research was supported
by a Multidisciplinary University Research Initiative on three dimensional direct visu-
alization from ONR and BMDO, grant FDN00014-96-1-1200, the California MICRO
program, Phillips Corporation, Interval Research Corporation, Pixar Animation Stu-
dios and Microsoft Graduate Fellowship.

7

To appear in the SIGGRAPH conference proceedings

Appendix 1. BRDF Model and Parameter
Recovery
In this appendix we present more details on the BRDF model, introduced in Section
4, and how its parameters are recovered. We use Ward’s [32] model for the specular
term in the BRDF, which could be modeled as either isotropic or anisotropic. In the
isotropic case,

� � � � � � ���� � � 	

 � � 	
 �� � �
� ��� � � � � � � � �
� � � � (6)

where � is a scalar surface roughness parameter,

 is the incident angle,

 �
is the

viewing angle, and
�

is the angle between the surface normal and the halfway vector�
between the lighting and viewing directions.

 ,
 � are two components (along
with �
 , � �) of the vector � which represents the incidence and viewing directions.

In the anisotropic case, we need two distinct roughness parameters � � , � � for
two principal axes on the surface and an azimuth angle � to define the orientation of
these principal axes on the surface relative to a canonical coordinate system. Then, the
parameter vector � actually has three components � � � � � � � � � and we have:

� � � � � � ���� � � 	

 � � 	
 �� � �
� ��� � � � � � � � 	 � � � � � � 	 ! � � � � � � � � �� � � � � �

(7)
where
�

is the same as in the isotropic case, and � is the azimuth angle of the halfway
vector
�

projected into the local 2D coordinate system on the surface patch defined
by the two principal axes. To compute � , � , which relates this coordinate system to
the canonical coordinate system, is necessary.

Now to parameter recovery. We wish to find � & , � � and � that minimize the
squared error between the measured and predicted radiance,

" � � & � � � � � � �
#�

 $ %
� &
 � � &�('
 � � � � � � � �
 � '
 � � (8)

where &
 is the measured radiance and '
 is the irradiance (computable from the
known light source position) at sample point)
 on the surface, and * is the number
of sample points.

Note that given a guess of � ,
� � � � �
 � becomes a known quantity, and mini-

mizing the error " reduces to a standard linear least-squares problem for estimating � &and � � . Plugging in these values in the right hand side of Eqn. (8) lets us compute " as
a function of � . The optimization problem thus simplifies to a search for the optimum
value of � to minimize " � � � . This is either a one-dimensional or three-dimensional
search depending on whether an isotropic or anisotropic model of the specular term is
being used. We use golden section search [26] for the isotropic case, and the down-
hill simplex method [26] in the anisotropic case. It is convenient that neither method
requires evaluating the derivative " + � � � , and both methods are fairly robust.

To deal with colored materials, we estimate both diffuse and specular reflectance
in each of the red, green, blue color channels. The specular roughness parameters �
are the same for all color channels. The nonlinear optimization is still over 1 or 3
parameters, since given � , � & and � � estimation for each channel remains a linear
least squares problem.

To make the parameter estimation additionally robust, we make two simple exten-
sions to the basic strategy derived above. The first is to solve a weighted least squares
problem instead of the vanilla version in Eqn. (8). Radiance measurements from the
highlight area have much larger magnitude than those from the non-highlight area.
Correspondingly the error in those measurements is higher both because of noise in
imaging as well as error in the BRDF model. Giving all the terms in (8) equal weight
causes biased fitting and gives poor estimation of the diffuse reflectance. From a sta-
tistical point of view, the correct thing to do is to weight each term by the reciprocal
of the variance of expected error in that measurement. Not having a good model for
the error term, we chose a heuristic strategy in which the weight ,
 for the - -th term
in the summation in Eqn. (8) is set to

%./ �10 2 3
 4 where �10 is some ad hoc or iter-

atively improved roughness vector. Since the roughness of most isotropic materials is
less than 0.2, we used an initial value between 0.1 and 0.2 for scalar � 5 .

The second refinement to improve parameter recovery is to use specular color in-
formation. For instance, specular highlights on dielectric and plastic materials have the
same color as the light source, while the color of specular highlights on metals is the
same as their diffuse components, which is the color of the light modulated by the dif-
fuse albedo. For plastic objects, there would be one distinct variable � & for each color
channel, but the same variable � � for all color channels. For metallic objects, there
would be one variable � & for each channel and a common ratio between the specular
and diffuse reflectance in all channels. Thus, we can reduce the degree of freedom
from 2 6 to 6 +1 where 6 is the number of color channels. For plastic, we can still
obtain both analytic and numerical linear least-squares solutions for the 6 +1 vari-
ables provided the other parameters are fixed. The program performs a heuristic test
to determine whether a material should be estimated with the metal or plastic specular
reflectance model. Our program first solves for the specular reflectance of each color
channel separately and then checks to see if they are larger than the estimated diffuse
components. If they are larger, then the material is considered metallic. Otherwise, the
plastic model is used. Then the smaller number of parameters corresponding to these
material types are solved.

References
[1] AUPPERLE, L., AND HANRAHAN, P. A hierarchical illumination algorithm for

surfaces with glossy reflection. In SIGGRAPH 93 (August 1993), pp. 155–164.
[2] BAUM, D. R., RUSHMEIER, H. E., AND WINGET, J. M. Improving radiosity

solutions through the use of analytically determined form factors. In SIGGRAPH
89 (1989), pp. 325–334.

[3] CHEN, E. QuickTime VR - an image-based approach to virtual environment
navigation. In SIGGRAPH ’95 (1995).

[4] CURLESS, B., AND LEVOY, M. A volumetric method for building complex
models from range images. In SIGGRAPH ’96 (1996), pp. 303–312.

[5] DANA, K. J., GINNEKEN, B., NAYAR, S. K., AND KOENDERINK, J. J. Re-
flectance and texture of real-world surfaces. In Proc. IEEE Conf. on Comp.
Vision and Patt. Recog. (1997), pp. 151–157.

[6] DEBEVEC, P., YU, Y., AND BORSHUKOV, G. Efficient View-Dependent Image-
Based Rendering with Projective Texture-Mapping. In 9th Eurographics Work-
shop on Rendering, (1998), pp. 105-116.

[7] DEBEVEC, P. Rendering synthetic objects into real scenes: Bridging traditional
and image-based graphics with global illumination and high dynamic range pho-
tography. In SIGGRAPH 98 (July 1998).

[8] DEBEVEC, P. E., AND MALIK, J. Recovering high dynamic range radiance
maps from photographs. In SIGGRAPH 97 (August 1997), pp. 369–378.

[9] DEBEVEC, P. E., TAYLOR, C. J., AND MALIK, J. Modeling and rendering
architecture from photographs: A hybrid geometry- and image-based approach.
In SIGGRAPH ’96 (August 1996), pp. 11–20.

[10] DRETTAKIS, G., ROBERT, L., AND BOUGNOUX, S. Interactive common il-
lumination for computer augmented reality. In 8th Eurographics workshop on
Rendering, St. Etienne, France (May 1997), J. Dorsey and P. Slusallek, Eds.,
pp. 45–57.

[11] GORAL, C. M., TORRANCE, K. E., GREENBERG, D. P., AND BATTAILE, B.
Modeling the interaction of light between diffuse surfaces. In SIGGRAPH ’84
(1984), pp. 213–222.

[12] GORTLER, S. J., GRZESZCZUK, R., SZELISKI, R., AND COHEN, M. F. The
Lumigraph. In SIGGRAPH ’96 (1996), pp. 43–54.

[13] HANRAHAN, P., SALZMAN, P., AND AUPPERLE, L. A rapid hierarchical ra-
diosity algorithm. In SIGGRAPH 91 (1991), pp. 197–206.

[14] HE, X. D., TORRANCE, K. E., SILLION, F., AND GREENBERG, D. P. A
comprehensive physical model for light reflection. In SIGGRAPH 91, (August
1991).

[15] KAJIYA, J. The rendering equation. In SIGGRAPH ’86 (1986), pp. 143–150.
[16] KARNER, K. F., MAYER, H., AND GERVAUTZ, M. An image based measure-

ment system for anisotropic reflection. In EUROGRAPHICS Annual Conference
Proceedings (1996).

[17] LAFORTUNE, E.P.F., FOO, S., TORRANCE,K.E., AND GREENBERG, D.P.
Non-Linear Approximation of Reflectance Functions. In SIGGRAPH 97, (1997),
pp.117-126.

[18] LAVEAU, S., AND FAUGERAS, O. 3-D scene representation as a collection of
images. In Proceedings of 12th International Conference on Pattern Recognition
(1994), vol. 1, pp. 689–691.

[19] LEVOY, M., AND HANRAHAN, P. Light field rendering. In SIGGRAPH ’96
(1996), pp. 31–42.

[20] LOSCOS, C., FRASSON, M.-C., DRETTAKIS, G., WALTER, B., GRANIER, X.,
AND POULIN, P. Interactive Virtual Relighting and Remodeling of Real Scenes.
Technical Report, iMAGIS-GRAVIR/IMAG-INRIA, (May 1999), http://www-
imagis.imag.fr/Membres/Celine.Loscos/relight.html.

[21] MARSHNER, S. Inverse Rendering for Computer Graphics. PhD thesis, Cornell
University, August 1998.

[22] MCMILLAN, L., AND BISHOP, G. Plenoptic Modeling: An image-based ren-
dering system. In SIGGRAPH ’95 (1995).

[23] NAYAR, S. K., IKEUCHI, K., AND KANADE, T. Shape from interreflections.
International Journal of Computer Vision 6, 3 (1991), 173–195.

[24] NIMEROFF, J., SIMONCELLI, E., AND DORSEY, J. Efficient re-rendering of
naturally illuminated environments. In 5th Eurographics Workshop on Rendering
(1994).

[25] Oren, M., and Nayar,S.K., “Generalization of Lambert’s Reflectance Model”,
Computer Graphics Proceedings, Annual Conference Series, pp.239-246 (1994).

[26] PRESS, W., FLANNERY, B., TEUKOLSKY, S., AND VETTERLING, W. Numer-
ical Recipes in C. Cambridge Univ. Press, New York, 1988.

[27] SATO, Y., WHEELER, M. D., AND IKEUCHI, K. Object shape and reflectance
modeling from observation. In SIGGRAPH ’97 (1997), pp. 379–387.

[28] SILLION, F. X., AND PUECH, C. Radiosity and Global Illumination. Morgan
Kaufmann Publishers, San Francisco, 1994.

[29] SZELISKI, R., AND SHUM, H.-Y. Creating full view panoramic image mosaics
and environment maps. In SIGGRAPH 97 (1997), pp. 251–258.

[30] TURK, G., AND LEVOY, M. Zippered polygon meshes from range images. In
SIGGRAPH ’94 (1994), pp. 311–318.

[31] VEACH, E., AND GUIBAS, L. J. Metropolis light transport. In SIGGRAPH 97
(August 1997), pp. 65–76.

[32] WARD, G. J. Measuring and modeling anisotropic reflection. In SIGGRAPH
’92 (July 1992), pp. 265–272.

[33] WARD, G. J. The RADIANCE lighting simulation and rendering system. In
SIGGRAPH ’94 (July 1994), pp. 459–472.

[34] Y.CHEN, AND MEDIONI, G. Object modeling from multiple range images.
Image and Vision Computing 10, 3 (April 1992), pp.145–155.

[35] WONG T.-T., HENG P.-A., OR S.-H. AND NG W.-Y. Image-based Rendering
with Controllable Illumination. In 8th Eurographics Workshop on Rendering,
(June 1997), pp.13–22.

[36] YU, Y., AND MALIK, J. Recovering photometric properties of architectural
scenes from photographs. In SIGGRAPH 98 (July 1998), pp. 207–217.

[37] YU, Y., AND WU, H. A Rendering Equation for Specular Transfers and its
Integration into Global Illumination. Eurographics’97, In J. Computer Graphics
Forum, 16(3), (1997), pp. 283-292.

8

To appear in the SIGGRAPH conference proceedings

Figure 7: The complete set of forty radiance images of the room
used to recover reflectance properties. Except for a few small areas,
every surface in the room was seen in at least one radiance image.
Each radiance image was constructed from between one and ten
digital pictures depending on the dynamic range of the particular
view. Black areas indicate regions which were saturated in all in-
put images, and are not used by the recovery algorithm. The last
three radiance images, reproduced ten stops darker than the rest,
intentionally image the light bulbs. They were used to recover the
positions and intensities of the sources. Full-resolution images are
available in the electronic version of this paper.

Figure 8: The model of the room, photogrammetrically recovered
from the photographs in Fig 7. The recovered camera positions of
the forty photographs are indicated.

Figure 9: The top picture is a radiance image of a whiteboard, show-
ing strong specular highlights. The bottom picture shows the dif-
fuse albedo map of the whiteboard recovered from several images.
Unlike the radiance image, the diffuse albedo map has a nearly uni-
form background, and is independent of the illumination.

Figure 10: The diffuse albedo maps of three posters with the same
texture. The posters were placed at different locations in the scene
and thus received significantly different illumination. Nonetheless,
the recovered albedo maps are nearly the same. For identification
purposes, a small yellow square was placed in a different location
on the lower right of each poster.

Figure 11: The top image shows a part of a wall that becomes no-
ticeably colored from light reflecting from the cards placed on the
table below, an effect known as ”color bleeding”. The bottom im-
age shows the recovered albedo map of the same part of the wall.
It is nearly uniform, showing that the color bleeding was properly
accounted for. The black line has been added to indicate where the
table top abutted the wall.

Figure 12: A comparison between real images (top) and synthetic
renderings of our room with the recovered reflectance parameters
(bottom). The simulated lighting is the same as in the original pic-
tures, and the synthetic viewpoints have been matched to the recov-
ered camera positions of the real images. The images show that
good consistency was achieved.

9

To appear in the SIGGRAPH conference proceedings

Figure 13: A comparison between real and virtual, this time with novel lighting. Two of the lights were switched off and the third was moved
to a new location. In addition, a real mirrored sphere was placed on the red card. The scene was photographed from two locations and these
real views are shown in the top row. To render the bottom row, we recovered the camera positions and light source position in the top views,
estimated the reflectance properties and position of the sphere, and added a virtual sphere to the model. The main noticeable difference is
lens flare; however, some inaccuracies in the model (e.g. the whiteboard marker tray was not modeled) are also apparent. Otherwise, the
illumination of the scene and appearance and shadows of the synthetic object are largely consistent.

(a) Synthetic rendering of room under novel illumination.

(b) Synthetic rendering of room with seven virtual objects added.

Figure 14: Panoramic renderings of the room, with various changes to lighting and geometry.

10

Extracting Objects from Range and Radiance Images

Yizhou Yuy Andras Ferenczz Jitendra Malikyy

Computer Science Division
University of California at Berkeley

ABSTRACT
In this paper we present a pipeline and several key techniques necessary for editing a real scene captured with both
cameras and laser range scanners. We develop automatic algorithms to segment the geometry from range images into
distinct surfaces, register texture from radiance images with the geometry, and synthesize compact high-quality texture
maps. The result is an object-level representation of the scene which can be rendered with modifications to structure
via traditional rendering methods.

The segmentation algorithm for geometry operates directly on the point cloud from multiple registered 3D range
images instead of a reconstructed mesh. It is a top-down algorithm which recursively partitions a point set into two
subsets using a pairwise similarity measure. The result is a binary tree with individual surfaces as leaves.

Our image registration technique performs a very efficient search to automatically find the camera poses for ar-
bitrary position and orientation relative to the geometry. Thus we can take photographs from any location without
precalibration between the scanner and the camera.

The algorithms have been applied to large-scale real data. We demonstrate our ability to edit a captured scene by
moving, inserting, and deleting objects.

Index Terms: Scene Editing, Object-Level Representation, Range Image Segmentation, Image Registration,
Texture-Mapping, Image-Based Modeling, Image-Based Rendering, Augmented Reality

1 Introduction
Capturing real environments to faithfully recreate them on a computer screen has become an important research area.
Most of the work in this field, image-based modeling and rendering [27, 6, 32, 47, 28, 18, 11, 41, 40, 42, 45, 51], has
focused on static environments that can be viewed from novel viewpoints as well as under novel lighting conditions.
However, challenges remain in making modifications to geometric properties, such as the relative position, orientation
and size of objects, and photometric properties, such as color or specularity. For example, we would like to animate
the objects in the environment; or move a statue to a different place in a virtualized museum.

An object is made up of a collection of surfaces which in turn have geometric properties such as size and shape
as well as photometric properties such as color and texture. Editing operations should be performed at object level,
which requires us to give each object geometric and photometric representations that are independent of the rest of the
scene. Since a scene is usually acquired as a whole, this kind of object-level information is not directly available from
the captured geometry or from photographs.

There are two basic problems related to this issue. First, we need to segment the scene into objects. In this paper,
we use a laser range finder to acquire a discrete representation of the geometry, a point cloud. Each point in the
cloud has a 3D position, an estimated normal orientation of the underlying surface at that point, and a returned laser
intensity value. These cues give adequate information to distinguish points that belong to different objects. Therefore,
we do segmentation on the point cloud before a mesh is actually built. Our technique is an extension of a 2D image
segmentation algorithm using spectral graph theory. The result is a binary tree with individual surfaces as leaves. We

yYizhou Yu (corresponding author) is currently with Department of Computer Science, University of Illinois at Urbana-Champaign, 1304 West
Springfield Avenue, Urbana, IL 61801. E-mail: yyz@cs.uiuc.edu or yizhouy@acm.org.

zAndras Ferencz is with Computer Science Division, University of California, Berkeley, CA 94720. E-mail: ferencz@cs.berkeley.edu.
yyJitendra Malik is with Computer Science Division, University of California, Berkeley, CA 94720. E-mail: malik@cs.berkeley.edu.

1

To appear in IEEE Trans. Visualization and Computer Graphics 2

first oversegment the scene into a set of coherent surfaces and then ask the user to interactively group surfaces into
semantically meaningful objects.

Second, we need to attach detailed photometric properties, such as reflectance and texture, to the objects. We
use a digital camera to capture such information and then recover the camera poses. In this way, we can set up
correspondences between pixels in the photographs and 3D points in the scene. Using calibration targets, we developed
an automatic technique for recovering camera pose for arbitrary position and orientation relative to the geometry. We
efficiently search for the correct matches between the detected calibration targets in these two types of images and
then solve a least-squares problem to recover the parameters of camera pose. This technique has much better average
time complexity than previous algorithms[26] in the same category. With correctly registered images, space efficient
texture maps can be synthesized for hardware texture-mapping.

Addressing these two problems adds much more flexibility to geometric and photometric data capture, cleans
the obstacles in extracting individual objects from range and radiance images, and allows humans to interactively
manipulate them. It makes it easier to build an object library based on the real world, which can be composed to form
novel scenes using the objects for rendering and animation.

1.1 Overview

Point

Meshes

Images

Texture

Images
Range

Point
Cloud

Groups

Meshes

Maps

Objects

Radiance
Images

Segmentation

Pose Estimation

Reconstruction

Registration

Calibrated

Simplified

Figure 1: Pipeline This figure shows the multiple stages in our data processing procedure.

The input to our pipeline is a set of range images and photographs. The range images are registered together first to
give a unified point cloud by using Cyra Technologies’ software [9] to automatically locate calibration targets in each
scan and interactively setting up corresponding targets among different scans. The rotation and translation between
two laser scans can be recovered from three pairs of correspondences, but the more the better. The calibration targets
are designed to be strongly retroreflective at the wavelength of the laser beam in order to be identified automatically.

The segmentation algorithm is then run on the point cloud, breaking it into groups. With some user interaction, we
can assemble these groups into objects. We then build a mesh for each object and run mesh simplification to reduce its
complexity. At the same time, the camera poses of the photographs are recovered automatically relative to the unified
point cloud. To attach detailed texture information to the objects, we compose texture maps using data from multiple
photographs for all the objects. In the end, we can realistically re-render the scene using the extracted geometric and
photometric properties and manipulate the objects as we wish.

From this process, we can see that range data segmentation can be useful in multiple stages. Fitting smooth
parametric surfaces to individual objects is much easier after segmentation, and memory capacity becomes less of a
limitation if we only reconstruct a mesh for one object at a time. Mesh simplification is improved since we do not
intend to simplify over segmentation boundary. Segmentation into surfaces with approximately uniform specularities
would aid in recovering specular reflectance models of the surfaces.

To appear in IEEE Trans. Visualization and Computer Graphics 3

2 Previous Work
The work we present in this paper has been made possible by previous work in geometry acquisition, mesh recon-
struction and simplification, image-based rendering and texture-mapping, 2D image registration and segmentation,
and range image registration and segmentation.

Recent work in laser range scanning has made it possible to recover accurate geometry of real-world scenes.
[3] introduced the iterative closest point(ICP) algorithm to register multiple range images. [37] addressed the same
problem for large data sets. A number of robust techniques for merging multiple range images into complex models
are now available [7, 48, 8, 49, 35]. [22, 12, 1] also introduced techniques to a more general problem which is
mesh reconstruction from unorganized points. The reconstructed meshes from the above techniques usually have huge
amount of complexity, which makes rendering inefficient. There is a large amount of work on obtaining simplified
meshes with minimal deviation in shape [23, 14, 29].

Techniques have been developed recently for texture-mapping recovered geometry[11, 10, 52, 33]. Some image-
based rendering work has been introduced to implicitly make use of recovered depth information in addition to
images[32, 42, 35].

There are two areas of research that are most related to this paper: segmentation and camera pose estimation.

2.1 Range Image Segmentation
There has been much work on range image segmentation in the computer vision and graphics community [4, 21,
34, 2, 24]. Most of these techniques consider every range image as a rectangular array of points with 3D positions.
Due to the similarity between range images and 2D images, most of the image segmentation techniques, such as
edge detection, region growing and pixel clustering, can be applied to range image segmentation[24]. The major cues
used include the depth value and normal orientation at each pixel. Most of previous work in this area was for fitting
surface primitives, such as planar and quadric patches, and generalized cylinders. Therefore, statistical tests are often
incorporated into the segmentation algorithms to verify whether a particular surface primitive can fit well to a group
of pixels, and determine whether region split or merge should be considered. This type of algorithm works well on
range images of mechanical CAD models which consist of planar and simple curved surfaces.

However, most real objects have unknown free-form shapes, such as statues and curtains. To extract objects from
a real scene, we are more interested in a segmentation algorithm that is independent of any surface primitive. Region
growing approaches based on local split and merge decisions are not very appropriate, either, because the decisions
made are local, which is suboptimal in finding object boundaries. We need some top-down algorithm to make global
decisions. On the other hand, we may need multiple range images from different angles to capture a complex model.
A segmentation algorithm, that can work on multiple registered range images simultaneously, is more interesting. In
this situation, the order of points defined by the rectangular array in a single image is lost. We need new techniques
to solve this more complicated problem. In the 2D image segmentation literature, some recent spectral graph theory-
based algorithms [44, 36, 30] appeared to perform better than other techniques. They make decisions on where to
partition the data using global information. We will extend the normalized cut framework in [44] to 3D range image
segmentation in the next section.

[31] proposes a technique for segmenting surface meshes by generalizing morphological watersheds. It is not
directly relevant to the problem we are looking into because we consider segmentation as a very fundamental data
processing stage which should happen at least in parallel to mesh reconstruction, not after. Effective segmentation of
points into groups should be able to benefit mesh reconstruction.

2.2 Camera Pose Estimation
The mathematical foundation for pose estimation from points, lines and curves has been extensively studied. Es-
timation based only on point correspondences from four [25] and more points is introduced in [13, 19]. Haralick,
et.al. [20] provides a review of many 3-point techniques with a careful analysis of their stability. Qiang, et.al. [39]
develops an analytic least squares technique for pose estimation from points, lines and ellipse-circle pairs. These
methods all assume a known correspondence between geometry and image features, which often requires extensive
user involvement.

Several techniques have been developed for automatic detection of features in the image and the geometry and
finding their correspondences. Most of these techniques are applicable to discrete geometric objects whose shape is
known exactly. Huttenlocher and Ullman [26], find corners and run a combinatorial search to find matches. Wunsch

To appear in IEEE Trans. Visualization and Computer Graphics 4

and Hirzinger [50] propose another method based on the iterative closest point algorithm [3]. These methods, however,
are very restrictive to the types of models they can handle, restricting themselves to simple CAD objects.

A compromise solution is to ask the user to suggest an initial pose by, for example, selecting a few point corre-
spondences, and then using object silhouettes to refine the estimation. Neugebauer and Klein [33] uses this technique
in addition to aligning the texture maps on the surface. They require an exact model and numerous photographs of the
object, conditions we are not guaranteed.

3 Range Data Segmentation
The input data to this problem is a 3D point cloud created by merging the points from multiple registered range images.
In addition to 3D position, each point has two associated attributes, a normal orientation estimated from neighboring
pixels in the scan image, and a returned laser intensity value which depends mostly on the surface reflectance corre-
sponding to the wavelength of the laser beam. The output of this module is a partition of the point cloud, treated as a
set, into subsets such that each subset defines a complete object. The subsets are mutually exclusive, and their union
is the complete set.

We achieve this goal in two steps. For the first step, we developed an automatic algorithm to partition the points
into surface regions, each of which has approximately uniform geometric and photometric properties represented by
3D locations, surface normals and returned laser intensities. In the second step, we interactively group surface regions
into individual objects such that each object can be treated separately but points in the same object are treated in the
same way. Note that surfaces in the same object may have very different surface properties. To give an example,
suppose one of the objects in the scene is a cube resting on a table. The first step would return 5 surfaces; the user
is responsible for indicating that all these surfaces belong to one object. Considerable semantic knowledge can be
involved in judging whether an object is merely resting on another or is rigidly attached and is thus part of the same
object; at this stage we think it prudent to leave this judgment to a user.

In the rest of the section, we introduce the algorithm for automatic segmentation of the point set into surface
regions. This is done by generalizing the normalized cut algorithm [44] to range data. There are three key issues to
consider here. Namely, a) what is the appropriate similarity measure for range data; b) precisely what is the criterion
to partition the graph; and c) what is the technique to obtain approximate solutions for large datasets.

3.1 Normalized Cut Framework
We introduce some details of the normalized cut algorithm[44] here. A graph G = (V;E) is defined on the input
data. In our context, the nodes represent local clusters derived from the point cloud with the associated attributes. An
edge in E, (s; t) with s; t 2 V , has a weight w(s; t) defined by the similarity between the location and attributes of
the two nodes defining the edge. The idea is to partition the nodes into two subsets, A and B, such that the following
disassociation measure, the normalized cut, is minimized.

Ncut(A;B) =
cut(A;B)

asso(A; V)
+

cut(A;B)

asso(B; V)
(1)

where cut(A;B) =
P

u2A;v2B
w(u; v) is the total connection from nodes in A to nodes in B; asso(A; V) =P

s2A;t2V
w(s; t) is the total connection from nodes in A to all nodes in the graph; and asso(B; V) is similarly

defined. This measure works much better than cut(A;B) because it favors relatively balanced subregions instead of
cutting small sets of isolated nodes in the graph.

To compute the optimal partition based on the above measure is NP-hard. However [44] shows that a good
approximation can be obtained by relaxing the discrete version of the problem to a continuous one which can be
solved using eigendecomposition techniques. Let y be the indicator vector of a partition. Each element of y takes
two discrete values to indicate whether a particular node in the graph belongs to A or B. If y is relaxed to take on
continuous real values, it can be shown that the optimal solution can be obtained by solving the generalized eigenvalue
system,

(D �W)y = �Dy (2)

where D is a diagonal matrix with D(i; i) =
P

j
w(i; j), W is the weight matrix with W (i; j) = w(i; j). The

eigenvector corresponding to the second smallest eigenvalue is the optimal indicator vector in real space. A suboptimal
partition can be obtained by first allowing y to take on continuous real values, solving the above generalized eigenvalue

To appear in IEEE Trans. Visualization and Computer Graphics 5

system for y, and then searching a certain number of discrete values for the best threshold to partition the real-valued
elements of y into two subgroups. The two resulting subregions from this partition can be recursively considered
for further subdivision. To improve efficiency, the complete graph defined by the data is usually simplified to only
have edges that connect two nearby nodes. This algorithm can be used to solve different segmentation problems by
choosing different edge weight W (u; v) [43, 30].

3.2 Setting Up the Graph
Since we have multiple high-resolution scans, solving the graph partition problem on the original point set is imprac-
tical. For example, we have a dataset for a large room with nineteen 800x800 scans. For comparison, note that in the
application of normalized cut to image segmentation, [44] considered 200x200 images. Thus we group nearby � points
into clusters such that each cluster is a node. All the points within the same cluster have similar normal orientations
and laser intensities. Clustering is actually carried out incrementally to minimize memory consumption. Only one of
the original range scans remains in memory every time. Part of its points get integrated into existing clusters, while
others create new clusters. For every point in this range scan, we check whether there are existing clusters whose
centroids are within a certain small distance from the considered point, whether the difference between the average
laser intensity of such an existing cluster and the intensity of the considered point is below a threshold, and whether
the difference in terms of normal orientation is also below another threshold. If there is no cluster satisfying these
conditions simultaneously, a new cluster is created. The number of nodes after initial clustering is reduced to about
40,000 for the room dataset. We use the averaged spatial location, normal and returned laser intensity of each cluster
as the attributes of its corresponding node in the graph. Here the returned laser intensity is a better cue than color
from photographs because it is a better approximation of surface albedo which is lighting independent. Thus we do
not need to worry about oversegmentation due to shadows and shading effects in photographs. Local edges are set up
among clusters that are within a certain distance of one another. We also set up random long-range connections among
clusters to help use global context [44]. The number of random edges incident to each node is the same,

p
n, where n

is the number of nodes in the graph. In this way, the adjacency matrix of the graph is sparse, which makes it possible
to solve the problem efficiently.

The weight w(u; v) over an edge (u; v) is the product of a similarity term S(u; v) and a proximity term P (u; v)
both of which are in the form of a Gaussian distribution. w(u; v) is a local measure of how likely the points (or
clusters) are to belong to the same surface. w(u; v) is close to 1 for points which are likely to belong together, and
close to 0 for points which are likely to belong to separate objects, as judged purely from local evidence.

S(u; v) = exp(�diff2(u; v)=2�2
w
) (3)

where diff(u; v) is the angular difference in case of normal orientation, and is the scalar difference in case of laser
intensity. Similarity in both normal orientation and laser intensity is considered during segmentation.

The proximity term over an edge (u; v) is used to model spatial coherence which means that nearby points are
more likely to belong to the same surface. Both similarity and proximity are well known Gestalt grouping factors.

P (u; v) = exp(�dist2(u; v)=2�2
c
) (4)

where dist(u; v) is some distance measure. The parameters �w and �c should be set a little bit larger than the standard
deviation of noise present in the input data. The standard deviation of noise can be calibrated using laser returns from
a piece of flat wall with constant color. Smaller values for the parameters tend to produce oversegmented results.

Surfaces and objects at different depth should be separated in segmentation. To enhance the difference caused by
depth discontinuity, we define an anisotropic distance metric dist(u; v) as follows. First we define a tangential plane
at each of the points u and v given the normals and positions. Let the vectors u n and up be the projections of the vector
!

uv onto the normal and tangential plane, respectively, at point u. Then dist u(u; v) =
p
E � jjunjj2 + jjupjj2=E where

E(� 1) is some adjustment parameter to magnify the difference along the normal direction and shrink the difference
along the tangential direction. This parameter can make sure to segment out surfaces belonging to different layers.
distv(u; v) can be defined similarly. Finally,

dist(u; v) =MAX(distu(u; v); distv(u; v)): (5)

�To accelerate nearest point lookup, we set up a two dimensional grid on a virtual plane with its normal set to the average normal orientation of
all the input points. Each cell in the grid has a list of points that are projected into it. To look up points that nearby a certain point, we only need to
check the points around the cell which that point is actually projected into.

To appear in IEEE Trans. Visualization and Computer Graphics 6

3.3 Criterion for Graph Partition

A B

Figure 2: Two regionsA and B are adjacent. A correct graph partition should happen at their border, not in the middle
of A.

Let us first look at the region shown in Fig. 2 where two subregions A and B are adjacent to each other. Surface
attributes are uniform within the same subregion but different across subregions. Although the correct partition should
happen at the boundary between A and B, normalized cut with local connections tends to partition the region in the
middle of A because subregionA is quite thin in the middle and the normalized cut value in Eq.(1) is very small there.
In the context of image segmentation, this can be justified as a segmentation of the image into ’parts’, but we felt that
this was not too important a consideration for us. We therefore introduce a slight modification of the segmentation
criterion by defining the normalized weighted average cut.

NWAcut(A;B) =MIN(
WAcut(A;B)

WAasso(A;A)
;
WAcut(A;B)

WAasso(B;B)
) (6)

where WAcut(A;B) =

P
u2A;v2B

S(u;v)P (u;v)P
u2A;v2B

P (u;v)
, WAasso(A;A) =

P
u;v2A

S(u;v)P (u;v)P
u;v2A

P (u;v)
, and WAasso(B;B) is

similarly defined. It is quite easy to figure out that in Fig. 2, normalized weighted average cut is minimized at the
boundary between A and B. This new measure does not favor balanced subregions as normalized cut, so it is not
appropriate as the basic criterion to be used for segmentation; but by setting a threshold on the minimum weighted
average cut we can reduce the chance of splitting in the middle of region A.

Algorithmically we proceed as follows. For the currently considered region, first solve the sparse eigensystem
Eq.(2) using Lanczos algorithm [17] to come up with a candidate partition, then check the normalized weighted
average cut along the candidate boundary. If both normalized weighted average cut and normalized cut are below the
threshold Tcut, split the region and consider the two subregions in turn; otherwise, stop recursion on the considered
region.

3.4 The Complete Algorithm
We have two postprocessing steps, boundary improvement and fine segmentation, which are aimed at getting high
quality segmentations, in spite of the fact that we could not process the original dataset directly in Eq.(2) because of
its large size.

After a region is split into two subregions, we have an initial boundary between them. In practice, this boundary
may deviate a little from the real surface boundary. To improve its localization, we exploit the linear order on the nodes
in the original region according to the magnitude of their corresponding elements in the second smallest eigenvector
of Eq.(2). A local segmentation problem is solved at each point cluster close to the initial boundary. At each of these
clusters, collect all clusters in its neighborhood and set up a complete graph among them since the size of graph is
small. Then search for the node that best partition the linear order into two parts under normalized cut criterion. Every
cluster near the initial boundary may be included into multiple local segmentations. Each local segmentation assigns
the cluster to one side of the boundary or other. We use majority voting to decide which side of the boundary it should
belong to. Once we have determined the membership of all clusters, the final boundary also becomes clear.

Cues on normal orientation and laser intensity should not be applied at the same time since they have different
noise levels and may interfere and reduce each other’s effectiveness during segmentation. For example, it is hard
to decide where to cut first if we have two perpendicular walls with regions of distinct colors on them. In practice,
segmentation is done in two passes. Continuity in normal orientation has been assigned a higher priority and is applied
in the first pass. Continuity in laser intensity is applied in the second pass. But proximity is needed in both passes to
maintain spatial coherence.

To appear in IEEE Trans. Visualization and Computer Graphics 7

To reduce the impact of the initial point clustering(which is suboptimal as it is local) at the beginning of the
algorithm, we introduce an additional step at the end of the algorithm to refine segmentation results. Based on the
previous segmentation, it reads in all points belonging to one group at a time, cluster them at a finer scale, and
run segmentation on the new clusters once again. The spirit of both these post-processing steps is a coarse-to-fine
refinement, something that has been tried quite extensively in various computer vision settings.

The whole segmentation algorithm is summarized as follows.

� Coarse Segmentation

– Clustering Group all points into clusters such that points in the same cluster are within a prescribed radius
from its centroid, and have close normal orientation and laser intensity.

– Cluster Segmentation

� Recursive segmentation based on normal continuity and proximity.

� Recursive segmentation based on continuity in returned laser intensity and proximity.

� Stopping Criterion Both the normalized cut value and weighted average cut value are below a thresh-
old.

� Boundary Improvement Once the stopping criterion is satisfied, apply local optimal segmentation
and voting at each boundary cluster to improve boundaries.

� Fine Segmentation Based on coarse segmentation results, every time only read all points that belong to one
group; set smaller radius for clustering and smaller � value in proximity term; and repeat the same steps in
coarse segmentation on them.

4 Mesh Reconstruction and Simplification
Given the segmentation results on a point cloud, we can recognize the points that belong to an object and build a mesh
or fit surfaces for that object. Although these are not the focus of this paper, we introduce the techniques that are
applied to perform these tasks here.

There are two different methods to build a mesh for an individual object. The first method tries to extract all the
points that belong to the object. This is actually a set of unorganized points since the scan order inherent in a range
image is lost. We can then build a mesh using the algorithms in [22] and [1]. In practice, we use the ’crust’ algorithm
in [1].

The crust algorithm works well for objects of which we have dense samples. However, our range images are not
dense enough for objects that have fine details. So we try to make use of the scan order in a range image and build
nearest neighbor connections. In each of the original range images, we first mark the points that belong to the object,
and then build a connection between two points if they are direct neighbors and both are marked. So we can extract
a partial mesh from each range image that covers the object and put them together to represent the geometry of the
object. Applying the algorithms in [48] and [8] merges these partial meshes and come up with a single mesh.

Once we have the meshes for individual objects, we continue to simplify them to improve rendering performance.
Most of the previous algorithms on mesh simplification can be applied. In practice, we use the technique presented in
[14];

While it is much less time-consuming to scan multiple objects simultaneously in an environment, there is little
information for back-facing surfaces and surfaces that are heavily occluded. For the same reason, these surfaces are
less visible and therefore less important. We interactively insert some simple polygons to model these back-facing and
occluded surfaces.

5 Image Registration
Given a mesh, we are interested in texture mapping the surface from photographs. We wish to allow the user to take
these photographs from any position and orientation, and then effortlessly align the pictures to the geometry from
range scans. More specifically, given an image and a geometry, we need to find the translation (3 parameters) and
the rotation (another 3 parameters) that describe the exact pose of the camera when the image was taken. Here we
assume that we know the internal parameters of the camera, such as focal length and radial distortion, with which we
can convert the real camera into an ideal pinhole camera [13].

To appear in IEEE Trans. Visualization and Computer Graphics 8

To calculate the pose for arbitrary rotation and translation, we need to know correspondences between features in
the image and the geometry. Automatically discovering suitable features (such as lines and corners) in general scenes
and matching them is extremely difficult and currently no reliable methods exist. Another possibility is to ask the user
to supply the features. However, this is very labor intensive and often not very accurate (users tend to label features
with an accuracy of a few pixels at best, and their performance diminishes after the first dozen images). An alternative
is to place unique calibration objects in the scene that are identifiable from both laser range data and images. With an
ample number of such features in each image, the pose can be determined automatically and accurately without user
intervention. The disadvantage of this method is that more planning must go into scene capture, ensuring that enough
calibration objects are visible from each image, and that these artificial objects must then be removed from the scene.
However, these limitations seem much less severe than the disadvantages of the other options.

Cyra Technologies’ laser scanner, that we used for this project, can achieve best performance in registering multiple
scans by using calibration targets taped to surfaces. We use these same targets to determine the camera pose. While
these targets are specifically designed for this scanner, our techniques can be applied in general when calibration targets
can be placed in the scene. These targets are flat square green patches with a white circular area in the middle. They
are designed to be easily identifiable from both laser range and image data, while being small to cover as little of the
surface as possible. These constraints, combined with a wide variety of lighting situations that inevitably changes the
apparent cover of any object, prevent us from adding a unique identifier to each target. Thus for each image, finding the
pose involves locating the targets in the image, finding the correspondences between these targets and known targets
in the geometry, and finally calculating the six parameters of rotation and translation for the camera.

5.1 Finding Targets in Images
To find the targets in an image we first sweep target templates (white circles with green borders) of several scales over
the image, using sum of squared distances (SSD) as a metric. As the circular targets actually project to elliptical patches
in the image, template matching (with a liberal threshold) is only effective at locating candidate target locations (since
ellipses centered at a point have three degrees of freedom, prohibitively many templates would be needed to accurately
find targets using only template matching). To verify candidate regions, we attempt to fit an ellipse to the central white
region, and evaluate the match, again using SSD. This is equivalent to matching against the best possible elliptical
template. Since the ellipse is found using a region of the image, not just a few pixels, the amount of redundancy
enables us to estimate the parameters of the ellipse to sub-pixel accuracy. Conveniently, this technique provides five
constraints for each target, which can be used to greatly reduce the combinatorial search for target correspondences.

5.2 Finding Target Correspondences
Once targets in the image have been identified, we must find their correspondence to known target locations in the
geometry. This can be posed as a combinatorial search problem: pick correspondences for enough targets to generate
an overdetermined set of constraints, solve for the best pose and test the error. If the error is within a threshold, which,
in turn, is based on the expected accuracy of the point locations, accept the conjecture. If we only use the location of
the center of the ellipses (xi; yi), without any initial guess three correspondences is enough to find the six parameters
of the pose to within four ambiguous locations, while four resolves the ambiguity and generates an overdetermined
system. Unfortunately, this simple combinatorial search thus takes O(n4

) time, where n is the number of targets in
the geometry. Since a large scene may require a hundred or more targets (we used 66 for our room model), this search
could be prohibitively expensive.

As noted above, we fit an ellipse to each target, yielding three additional parameters: major axis a i, minor axis bi,
and rotation of the major axis to the vertical i. Given a target in the geometry and an associated normal vector, we
can compute the projection of the circle onto an arbitrary image plane giving a g, bg, g. Let Tp and Tn be the position
and normal of target T in the geometry, and Cp the camera location. For computational convenience we only consider
image planes perpendicular to the vector Q = Cp � Tp (i.e. where the target is at the center of the image). For targets
not located at the center of the image, we reproject them onto such a plane and compute a i, bi and i relative to this
new plane (this needs to be done only once for each image target). Let C up be the up vector for this new image plane,
r be the physical radius of the inner circle of the targets, and f the focal length of the camera. Given these, a g , bg, g
are computed by:

ag =
r

kQk � f

bg = ag � (Q � Tn)

To appear in IEEE Trans. Visualization and Computer Graphics 9

g = cos
�1
(
Tn �Q

kTn �Qk � Cup � sign)

where
sign = (Tn � Cup)=jTn � Cupj:

Thus 2 target correspondences provide 10 constraints (6 from the two ellipses and 4 from the two pixel locations),
which is enough to solve for a unique camera pose in the general case. We do this by anchoring the image target
centers to their counterparts in the geometry, constraining the 6-dimensional system to a 2-dimensional manifold. We
then minimize the function

2X
t=1

(ati � atg)

2
+ (bti � btg)

2
+

�
(ti � tg) �

(ati � bti) + (atg � btg)

2

�2
!

using a standard least squares optimizer. As this optimization is typically prone to a small number of local minima,
we run it from multiple initial positions. A detailed treatment of pose estimation from circle/ellipse pairs can be found
in [39].

Since this system with 10 equations and 6 unknowns is overdetermined, each solution returns an error that can be
used to weed out most bad correspondences immediately. Otherwise, we use this initial guess for the pose to find a
small set (typically less than 3) of candidate correspondences for each remaining image target. We try these one at a
time, solving the optimization for a new pose given three targets, and using the remaining targets to confirm or reject
the solution.

While this still has a worst-case running time of O(n4
), for any practical arrangement of targets (without many

targets clumped together) we expect the running time to be
(n 2
). As reported in the results section, this is the

observed behavior, which is much faster than previous algorithms[26] whose complexity is always O(n 4
).

5.3 Recovering Camera Pose
Once we find an acceptable set of correspondences, we fine tune the pose by solving a final least-squares optimization,
over all 6 parameters, using the previous estimate as an initial position. This optimization minimizes the function:

mX
t=1

(xti � xtg)
2
+ (yti � ytg)

2

where (xtg ; ytg) is the location of the projected center of target t in the image. (We do not attempt to fit a, b, in this
function, for these vary much more slowly than the projection of the center points, so they become irrelevant when
enough targets are available).

6 Texture-Mapping
For rendering and manipulation, meshes with attached texture maps are used to represent objects. Given camera poses
of the photographs and the mesh of an object, we can extract texture maps for the mesh and calculate the texture
coordinates of each vertex in the mesh.

We use conventional texture-mapping for the objects, which means each triangle in a mesh has some correspond-
ing triangular texture patch in the texture map and each vertex has a pair of texture coordinates which is specified by
its corresponding location in the texture map. For our situation, conventional texture-mapping is better than projective
texture-mapping[11]. While texture will be projected incorrectly in projective texture-mapping once an object moves,
conventional texture-mapping makes texture stick to the mesh when we move the objects. Directly mapping pho-
tographs onto a mesh using conventional texture-mapping would generate perspective distortion because photographs
involve a perspective transformation and conventional texture-mapping is accurate only under affine maps. However,
we can remove this kind of distortion by resampling the original photographs with a perspective transformation and
warping the samples to produce new texture maps which are correct under affine maps.

Since each triangle in a mesh may be covered by multiple photographs, we actually synthesize one texture patch
for each triangle to remove the redundancy. This texture patch is the weighted average of the projected areas of the
triangle in all photographs. The weight for each original area from photographs is set in such a way that the weight
becomes smaller when the triangle is viewed from a grazing angle or its projected area is close to the boundaries of the
photograph to obtain both good resolution and smooth transition among different photographs. Visibility is determined

To appear in IEEE Trans. Visualization and Computer Graphics 10

using Z-buffer for each pixel of each original area to make sure only correct colors get averaged. We apply the scheme
in [46] to place the synthetic triangular texture patches into texture maps, and therefore obtain texture coordinates.
This scheme quantizes the edge length(number of texels along each edge) of every texture patch to be a power of 2.

The colors for triangles invisible in all of the photographs can be obtained by propagating the colors from nearby
visible triangles. This is an iterative process because invisible triangles may not have immediate neighboring triangles
with colors at the very beginning. If an entire triangle is invisible, a color is obtained for each of its vertices through
propagation. This color is a weighted average of the colors from the vertex’s immediate neighbors with the weight in
inverse proportion to their distance. If a triangle is partially visible, it is still allocated with a texture patch and the
holes are filled from the boundaries inwards in the texture map. The filled colors may be propagated from neighboring
triangles since holes may cross triangle boundaries.

(a) (b)

Figure 3: (a) An original photograph; (b) the result of applying the derivative of the Gaussian to the image in (a).
Areas with edges are allocated with more pixels during texture map synthesis.

We make use of some information measure to decide the size of each texture patch so only a small number of texels
are allocated for a patch without significant color variations. The response of an edge detection operator (the derivative
of the Gaussian) is taken as our information measure, and applied to all original photographs(Fig. 3). For each texture
patch, we use the maximum response at its corresponding pixels in the photographs to determine the number of texels
it actually needs to keep the original variations on the triangle.

Additional savings of texture memory can be achieved by reusing texture patches for multiple 3D triangles, when
the texture over these triangles look similar. For example, if the walls in a room are all white, it is possible to represent
the shading variations on the walls with a small number of texture patches even if the number of triangles for the walls
is quite large. This requires that we cluster the texture patches and set the same texture coordinates to all triangles in
the same cluster. The K-means algorithm (Lloyd algorithm) in vector quantization [16] can then be used to cluster all
the texture patches with the same size. Because of Mach Band effect, slight color difference along the edge shared by
two 3D triangles may be rather obvious. The K-means algorithm adopts summed squared difference as its objective
function. We change it slightly by allowing a distinct weight for each squared difference in the summation and set a
larger weight for difference on edge texels to alleviate this effect. Given an error tolerance, we need to run a binary
search to find the minimum number of clusters that can achieve that error. This process is quite time-consuming since
each step of the binary search needs to run the K-means algorithm whose complexity isO(nmd) where n is the number
of initial vectors, m is the number of clusters, and d is the dimensionality of each vector. This complexity becomes
O(n2d) whenm is a large fraction of n. In practice, we exploit a two-level scheme to improve the performance by first
grouping the n vectors into

p
n clusters and then running the binary search on the vectors belonging to each cluster

which in turn splits into multiple clusters.

To appear in IEEE Trans. Visualization and Computer Graphics 11

7 Results
Our algorithms have been tested on a complete real scene—a large reading room—as well as on individual laser range
scans and photographs. We took 19 800 by 800 range scans of the reading room and also scanned a piano from three
positions in a separate setting with Cyra Technologies’ time-of-flight laser scanner [9]. Most visible surfaces were
covered at centimeter accuracy. The scans were registered together using Cyra’s software. A little more than one
hundred photographs were taken with a Sony DSC-D770 digital camera.

7.1 Geometry Segmentation and Reconstruction
Since there is noise and outliers in the scans, we filter the scans before sending them to our segmentation algorithm
which runs on a Pentium II 450MHz PC. For the reading room, our segmentation code produced 393 groups in 4
hours which were further grouped into 95 objects and surfaces within two hours of user interaction. No user-assisted
segmentation is needed. The results from segmentation is shown in Fig. 4(c). A visualization of the meshes after
user-assisted grouping is shown in Fig. 4(d) with different colors for different objects. All the curtains and furniture,
including lamps, tables, couches, dressers, and chairs, are correctly segmented out. Before user interaction, the number
of groups for each object ranges from 2 to 20 with an average of 4. Oversegmentation produced extra groups on walls
and along object boundaries most of which are not very visually noticeable. Some of them are marked out with white
circles in Fig. 4(c). We did not group oversegmented pieces on walls together interactively because we do not have
the need to manipulate a complete piece of wall. Fig. 4(a) and (b) also gives the segmentation results for a different
but simpler room and a single facade. In Fig. 4(a), a person was sitting in the next room while it was scanned. We
can see his head and torso (in the region marked out with a red line) are correctly segmented out from the rest of the
environment. Fig. 4(b) shows that our anisotropic distance metric in Eq. 5 can effectively separate layers at different
depth.

Most of the meshes, including the piano, were reconstructed using the ’crust’ algorithm [1]. Antique tables and
chairs as well as curtains were reconstructed using an algorithm similar to [8]. Fig. 5 shows an image of the meshes
which include lamps, tables, curtains, couches as well as the ceiling and walls. To demonstrate that we really have
extracted individual objects, Fig. 6 shows the individual models of an antique table, a chair and the piano. The points
on the floor were segmented out automatically, and a single plane was fit to replace those points.

7.2 Camera Pose Estimation
To evaluate our camera pose estimation technique, we look at three aspects: a) the amount of user intervention, b) the
accuracy of the resulting pose, and c) the computational cost of our algorithm. We ran our automatic algorithm on
62 images with four or more targets visible. In these images, the automatic target detector found 90% of the visible
targets, while finding four false matches. These errors were easily correctable by prompting the user to localize the
search. Poses were estimated correctly for 58 of the 62 images. The remaining 4 coincidentally lined up with an
erroneous set of targets in the geometry. These errors could also be easily corrected interactively by supplying one
pair of correspondences. The amount of user intervention was approximately 15 minutes.

We found the accuracy of our estimated pose to be very high, typically within one pixel. An example of this is
shown in Fig. 7 where a sample image is texture-mapped onto the geometry and the resulting surfaces are displayed
from a different viewing direction (black areas in Fig. 7(c) indicate backfacing or occluded areas in the geometry) .
Note the object boundaries in the image line up with geometric discontinuities in the scene.

As expected, our algorithm runs in O(n2
) time for real-world inputs. For fifty targets in the geometry, the running

time was 5.8 seconds, while for 100 targets, the algorithm took 21 seconds.
From those calibrated camera poses and simplified meshes , we synthetically composed 22 1024 by 512 texture

maps that are used to render the original as well as the altered scene.

7.3 Scene Editing
Our ultimate goal is object manipulation. Fig. 8 shows two comparisons to demonstrate our ability to do scene
editing. The images on the left are re-renderings of the original scene from a novel viewpoint by texture-mapping the
reconstructed geometric models. The images on the right show synthetically composed scenes. In Fig. 8(b), a couch
is moved and replicated to places near the fireplace, a piano inserted and placed near where the couch was. In Fig.
8(d), we can see two lamps flying in the air. Fig. 9 gives two more images with novel scene compositions.

To appear in IEEE Trans. Visualization and Computer Graphics 12

(a) (b)

(c)

(d)

Figure 4: The segmentation results on three datasets. (a) a simple room with portals; (b) Albert Hall facade; (c) a large
reading room. (a), (b) and (c) show the segmentation results from our algorithm. Each dot represents one point cluster.
Clusters in the same group are shown with the same color and density. Some oversegmentations are marked out with
white circles in (c). (d) shows the segmentation results as multiple pieces of colored meshes for the reading room with
furniture and curtains after the user interactively grouped surfaces into objects. Objects are shown in distinct colors.

To appear in IEEE Trans. Visualization and Computer Graphics 13

Figure 5: The reconstructed meshes with targets(green) and recovered camera poses(red and blue) for the reading
room. There is a separate mesh for each object.

(a) (b) (c)

Figure 6: Geometric models of three objects. The meshes were built after their corresponding points were segmented
out from the range images using our segmentation algorithm. (a) An antique table, (b) a piano, (c) an antique chair.

To appear in IEEE Trans. Visualization and Computer Graphics 14

(a) (b)

(c)

Figure 7: (a) A real photograph with targets located; (b) The scanned point cloud viewed from the recovered camera
pose; (c) Low-resolution texture-mapping using a single photograph. Note the edge alignment between the image and
the geometry.

To appear in IEEE Trans. Visualization and Computer Graphics 15

(a) (b)

(c) (d)

Figure 8: (a)&(c) Synthetic images with objects in their original positions rendered using texture-mapping. (b)&(d)
Synthetic images with object insertion and relocation. A piano is added to the room, a couch and two lamps moved
and replicated.

(a) (b)

Figure 9: (a)&(b) More synthetic images with object manipulation.

To appear in IEEE Trans. Visualization and Computer Graphics 16

8 Conclusions and Future Work
We presented two automatic techniques, range data segmentation and camera pose estimation, that are necessary for
building an object-level representation and scene editing for a real scene captured with both cameras and laser range
scanners. Range data segmentation enables building separate geometric models for each individual object in the
scene. Camera pose estimation enables accurate alignment between photographs and geometry, which in turn makes
texture-mapping individual objects possible.

A multi-stage data processing pipeline is proposed for building such an object-level representation. In this pipeline,
the stage of building a high-quality mesh for each object remains challenging. This is because only incomplete range
data can be obtained for objects present in a large environment due to accessibility and occlusion. Fitting smooth
models to local regions seems a promising approach to fill in the missing parts.

Some other stages in the pipeline also need improvement. One should be able to recover surface reflectance from
photographs using the techniques in [40, 51] to obtain a lighting independent representation of each object. Surface
reflectance also gives more information for geometry segmentation and image registration. However, recovering
surface reflectance information itself requires segmentation and image registration. So it may be possible to improve
these three types of estimation simultaneously in an iterative framework.

Acknowledgments
The authors would like to thank Ben Kacyra, Mark Wheeler, Daniel Chudak and Jonathan Kung at Cyra Technologies,
Inc. for their help and advice in using their time-of-flight laser scanner and the accompanying Cyrax software. Thanks
to Marc Levoy, Brian Curless and Lucas Pereira for providing us their volumetric mesh reconstruction software during
an early testing stage of this project, Jianbo Shi for some helpful discussions on normalized cuts, Johnny Chang for his
help on demonstrations during the preparation of an earlier version of this paper, and the reviewers for their valuable
comments. Mesh simplification was done with the software from Michael Garland. This research was sponsored by a
Multidisciplinary Univeristy Research Initiative on 3D direct visualization from ONR and BMDO, grant FDN00014-
96-1-1200, the California MICRO program, and the Microsoft Graduate Fellowship program.

References
[1] AMENTA, N., BERN, M., AND KAMVYSSELIS, M. A New Voronoi-Based Surface Reconstruction Algorithm. In Proc. of

SIGGRAPH 98, pp.415-421.
[2] LEONARDIS, A., GUPTA, A. AND BAJCSY, R. Segmentation of Range Images as the Search for Geometric Parametric

Models. In Int’l J. Computer Vision (1995), vol.14, no.3, pp. 253-277.
[3] BESL, P.J., AND MCKAY, N.D. A method for registration of 3-d shapes. In IEEE Trans. Patt. Anal. Machine Intell.(1992),

18(5), pp. 239–256.
[4] BESL, P.J., AND JAIN, R.C. Segmentation Through Variable-Order Surface Fitting. In IEEE Trans. Patt. Anal. Machine

Intell.(1988), 10(2), pp. 167–192.
[5] BOUGUET, J.-Y., AND PERONA, P. 3d photography on your desk. ICCV (1998).
[6] CHEN, E. QuickTime VR - an image-based approach to virtual environment navigation. In SIGGRAPH ’95 (1995).
[7] Y.CHEN, AND MEDIONI, G. Object modeling from multiple range images. Image and Vision Computing 10, 3 (April 1992),

pp.145–155.
[8] CURLESS, B., AND LEVOY, M. A volumetric method for building complex models from range images. In SIGGRAPH ’96

(1996), pp. 303–312.
[9] CYRA TECHNOLOGIES, INC. Online documents. www.cyra.com/cyrax.html.

[10] DEBEVEC, P., YU, Y., AND BORSHUKOV, G. Efficient View-Dependent Image-Based Rendering with Projective Texture-
Mapping. In 9th Eurographics Workshop on Rendering, (1998), pp. 105-116.

[11] DEBEVEC, P. E., TAYLOR, C. J., AND MALIK, J. Modeling and rendering architecture from photographs: A hybrid
geometry- and image-based approach. In SIGGRAPH ’96 (August 1996), pp. 11–20.

[12] EDELSBRUNNER, H., AND MÜCKE, D.P. Three-dimensional Alpha Shapes. In ACM Transactions on Graphics, 13, pp.43-
72, 1994.

[13] FAUGERAS, O. Three-Dimensional Computer Vision. The MIT Press, Cambridge, Massachusetts, 1993.
[14] GARLAND, M, AND HECKBERT, P.S. Surface Simplification Using Quadric Error Metrics. In SIGGRAPH ’97 (1997),

pp. 209–216.
[15] GEMAN, S., AND GEMAN, D. Stochastic Relaxation, Gibbs Distributions, and the Bayesian Restoration of Images. In IEEE

Patt. Anal. Machine Intell. (1984), vol.6, no.6, pp. 30–50.
[16] GERSHO, A., AND GRAY, R.M. Vector quantization and signal compression Boston : Kluwer Academic Publishers, 1992.

To appear in IEEE Trans. Visualization and Computer Graphics 17

[17] GOLUB, AND VAN LOAN Matrix computations. John Hopkins Press, 1989.
[18] GORTLER, S. J., GRZESZCZUK, R., SZELISKI, R., AND COHEN, M. F. The Lumigraph. In SIGGRAPH ’96 (1996),

pp. 43–54.
[19] HARALICK, R.M., JOO, H., LEE, C.-N., ZHUANG, X., AND KIM, M.B. Pose estimation from corresponding point data.

In IEEE Trans. Systems, Man Cybernetics(1989), 19(6):1426.
[20] HARALICK, R.M., LEE, C., OTTENBERG, K., AND NOLLE, M. Review and analysis of solutions of the three point

perspective pose estimation. In International Journal of Computer Vision(1994), 13(3), pp.331-356.
[21] HOFFMAN, R.L., AND JAIN, A.K. Segmentation and Classification of Range Images. In IEEE Patt. Anal. Machine Intell.

(1987), 9(5), pp. 608–620.
[22] HOPPE, H., DEROSE, T., DUCHAMP, T., MCDONALD, J., AND STUETZLE, W. Surface reconstruction from unorganized

points. In Proc. SIGGRAPH’92, pp.71-78.
[23] HOPPE, H., DEROSE, T., DUCHAMP, T., AND MCDONALD, J., AND STUETZLE, W. Mesh Optimization. In Proc.

SIGGRAPH’93, pp.19-26.
[24] HOOVER, A., JEAN-BAPTISTE, G., JIANG, X.Y., FLYNN, P.J., BUNKE, H., GOLDGOF, D.B., BOWYER, K., EGGERT,

D.W., FITZGIBBON, A., AND FISHER, R.B. An Experimental Comparison of Range Image Segmentation Algorithms. In
IEEE Patt. Anal. Machine Intell. (1996), pp. 673–689.

[25] HUNG, Y., YEH, P.S., AND HARWOOD, D. Passive ranging to known planar point sets. In IEEE Int. Conf. on Robotics and
Automation(1985), pp.80-85.

[26] HUTTENLOCHER, D.P. AND ULLMAN, S. Recognizing solid objects by alignment with an image. In International Journal
of Computer Vision(1990), 5(2), pp.195-212.

[27] LAVEAU, S., AND FAUGERAS, O. 3-D scene representation as a collection of images. In Proceedings of 12th International
Conference on Pattern Recognition (1994), vol. 1, pp. 689–691.

[28] LEVOY, M., AND HANRAHAN, P. Light field rendering. In SIGGRAPH ’96 (1996), pp. 31–42.
[29] LINDSTROM, P. AND TURK, G. Evaluation of Memoryless Simplification. In IEEE Transactions on Visualization and

Computer Graphics, 5(2), 1999, pp. 98-115.
[30] MALIK, J., BELONGIE, S., SHI, J., AND LEUNG, T. Textons, Contours and Regions: Cue Combination in Image Segmen-

tation. In International Conference on Computer Vision, 1999.
[31] MANGAN, A.P., AND WHITAKER, R.T. Partitioning 3D Surface Meshes Using Watershed Segmentation. In IEEE Trans.

on Visualization and Computer Graphics, 5(4), 1999, pp.308-321.
[32] MCMILLAN, L., AND BISHOP, G. Plenoptic Modeling: An image-based rendering system. In SIGGRAPH ’95 (1995).
[33] NEUGEBAUER, P.J. AND KLEIN, K. Texturing 3D Models of Real World Objects from Multiple Unregistered Photographic

Views. In Eurographics’99 (1999), pp 245–256.
[34] NEWMAN, T.S., FLYNN, P.J., AND JAIN, A.K. Model-based classification of quadric surfaces. In CVGIP:Image Under-

standing (1993), 58(2), pp 235-249.
[35] NYLAND, L. ET AL The Impact of Dense Range Data on Computer Graphics. In CVPR MVIEW’99.
[36] PERONA, P., AND FREEMAN, W.T. A factorization approach to grouping. In Proc. ECCV’98, pp. 655–670.
[37] PULLI, K. Multiview Registration for Large Data Sets. In International Conference on 3D Digital Imaging and Modeling

(1999), pp. 160–168.
[38] PRESS, W., FLANNERY, B., TEUKOLSKY, S., AND VETTERLING, W. Numerical Recipes in C. Cambridge Univ. Press,

New York, 1988.
[39] JI, Q., COSTA, M., HARALICK, R., AND SHAPIRO, L. An integrated linear technique for pose estimation from different

features. In International Journal of Pattern Recognition and Artificial Intelligence(1999), June.
[40] SATO, Y., WHEELER, M. D., AND IKEUCHI, K. Object shape and reflectance modeling from observation. In SIGGRAPH

’97 (1997), pp. 379–387.
[41] SEITZ, S. M., AND DYER, C. R. Photorealistic scene reconstruction by voxel coloring. In CVPR (1997), pp.1067-1073.
[42] SHADE, J., GORTLER, S., HE, L.-W., AND SZELISKI, R. Layered Depth Images. In SIGGRAPH ’98 (1998), pp. 231–242.
[43] SHI, J., AND MALIK, J. Motion Segmentation and Tracking Using Normalized Cuts. In International Conference on

Computer Vision (1998).
[44] SHI, J., AND MALIK, J. Normalized Cuts and Image Segmentation. In IEEE Conf. Computer Vision and Pattern Recognition

(1997).
[45] SHUM, H.-Y., AND HE, L.-W. Rendering with Concentric Mosaics. In SIGGRAPH’99 (1999), pp. 299–306.
[46] SOUCY, M., GODIN, G., AND RIOUX, M. A texture-mapping approach for the compression of colored 3D triangulations.

In Visual Computer (1996), vol.12, pp. 503–514.
[47] SZELISKI, R. Image mosaicing for tele-reality applications. In IEEE Computer Graphics and Applications (1996).
[48] TURK, G., AND LEVOY, M. Zippered polygon meshes from range images. In SIGGRAPH ’94 (1994), pp. 311–318.
[49] WHEELER, M.D., SATO, Y., AND IKEUCHI, K. Consensus surfaces for modeling 3D objects from multiple range images.

In DARPA Image Understanding Workshop (1997).
[50] WUNSCH, P., AND HIRZINGER, G. Registration of CAD-Models to Images by Iterative Inverse Perspective Matching. In

International Conference on Pattern Recognition (ICPR), 1996, pp.77-83.

To appear in IEEE Trans. Visualization and Computer Graphics 18

[51] YU, Y., DEBEVEC, P, MALIK, J., AND HAWKINS, T. Inverse Global Illumination: Recovering Reflectance Models of Real
Scenes from Photographs In SIGGRAPH 99 (July 1998), pp. 215–224.

[52] YU, Y. Efficient Visibility Processing for Projective Texture-Mapping. Journal of Computers & Graphics, Vol. 23, No. 2,
1999, pp.245-253.

[53] YU, Y., AND MALIK, J. Recovering photometric properties of architectural scenes from photographs. In SIGGRAPH 98
(July 1998), pp. 207–217.

To appear in the SIGGRAPH conference proceedings

Synthesizing Bidirectional Texture Functions for Real-World Surfaces

Xinguo Liuyz Yizhou Yuyy Heung-Yeung Shumy

Abstract

In this paper, we present a novel approach to synthetically generat-
ing bidirectional texture functions (BTFs) of real-world surfaces.
Unlike a conventional two-dimensional texture, a BTF is a six-
dimensional function that describes the appearance of texture as
a function of illumination and viewing directions. The appearance
change is caused by visible small-scale geometric details on sur-
faces. From a sparse set of images under different viewing/lighting
settings, our approach generates BTFs in three steps. First, it recov-
ers the approximate 3D geometry of surface details using a shape-
from-shading method. Then, it generates a novel version of the ge-
ometric details that has the same statistical properties as the sample
surface with a non-parametric sampling method. Finally, it employs
an appearance preserving procedure to synthesize novel images for
the recovered or generated geometric details under various view-
ing/lighting settings, which then defines a BTF. Our experimental
results demonstrate the effectiveness of our approach.

Keywords: Bidirectional Texture Functions, Reflectance and
Shading Models, Texture Synthesis, Image-Based Rendering.

1 Introduction

Surface appearance modeling has drawn much attention from re-
searchers since the dawn of computer graphics. Appearance mod-
els are closely related to geometry. There are three levels of scales
in geometry, namely, the macrostructure level, the mesostructure
level [19] and the microstructure level. A geometric model usu-
ally refers to the macrostructure level, and is often specified as a
set of polygonal and/or curved surfaces. The mesostructure level
includes geometric details that are relatively small but still visible
such as bumps and dents on a concrete surface. The microstructure
level involves surface microfacets that are visually indistinguish-
able by human eyes. The last two levels of geometry contribute to
surface appearance properties. For instance, bump maps are used to
model the mesostructure level while BRDFs model the microstruc-
ture level.

We are interested in modeling appearance at the mesostructure
level for real-world surfaces such as concrete surfaces, crumpled
papers, pebbles and carpets. The presence of such small-scale de-
tails gives rise to a rich set of visual effects, including mutual shad-
owing, interreflection, occlusion and foreshortening, in addition to

yMicrosoft Research China
yyUniversity of Illinois at Urbana-Champaign
zState Key Lab. of CAD&CG, Zhejiang University

varying surface normal orientations. Without properly modeling
such effects, surfaces would look too smooth to be real. Bump
and normal mapping techniques can model the effects caused by
changing normal orientations but not others. However, all the
above visual effects for bumpy surfaces (as well as spatially vary-
ing reflectance) can be captured by bidirectional texture functions
(BTFs).

A BTF is defined as a six dimensional function with a 2D texture
associated with each possible combination of lighting and view-
ing directions which account for the other four dimensions. (So
a BTF has two additional dimensions for textures compared to a
4D BRDF.) The pioneering work by Dana et. al. [7, 8] on BTFs
took an experimental approach that acquired images of material
samples under various combinations of lighting and viewing direc-
tions. Their work led to the CUReT database that has a sparse set
of images partially covering the lighting and viewing hemispheres
for each material sample. Such a sparse sampling is not adequate
to faithfully represent material appearances for graphical rendering
purposes. On the other hand, acquiring a dense set of samples for
BTFs is prohibitive in practice because a BTF has six dimensions.
Although [17] introduces a technique to precompute some of the vi-
sual effects for regular synthetic bump structures, stochastic details
on real-world materials are not modeled.

In this paper, we study the following problem: given discrete
samples of the BTF of a real-world surface with mesostructure de-
tails, can we synthesize the continuous BTF? Specifically, from a
sparse set of sample textures, can we synthesize a new texture at
any given lighting/viewing setting? Moreover, similar to 2D tex-
ture synthesis, novel BTFs can be synthesized from a given BTF
to emulate the stochastic properties of texture images of the given
BTF under all lighting/viewing settings.

We present an algorithm to solve the above two problems, by
exploiting both geometric and photometric properties of material
samples and effectively integrating them together. We first recover
the height field on a material from a small number of images and
synthesize novel 3D structures for the same material. In our work,
we use sample textures from the CUReT database. The recovered
or synthesized height fields are used for rendering synthetic images
of the material under different combinations of lighting and view-
ing directions. The rendered images are then fed into an appear-
ance preserving texture synthesis procedure, along with the set of
acquired sample images, to synthesize high-quality sample images
of the corresponding BTF.

In summary, this paper has the following three major contribu-
tions.

� First of all, we propose a novel hybrid approach for studying
appearance models, which can be a useful idea for bridging
other geometry-based and image-based techniques.

� Second, we introduce an algorithm that synthesizes complete
BTFs, including the statistical structure and statistical texture,
from a sparse set of sample images.

� Third, we develop a method to recover bump maps from
photographs of real world materials by adapting an existing
shape-from-shading algorithm.

To appear in the SIGGRAPH conference proceedings

The remainder of this paper is organized as follows. The next
section provides the necessary background and related work. Sec-
tion 3 gives an overview of our algorithm. The details of our algo-
rithm will be discussed in Section 4 (geometry recovery), Section 5
(geometry synthesis) and Section 6 (BTF synthesis). And Section
7 presents our results.

2 Background and Related Work

2.1 BTFs

There are two alternative definitions of a BTF from different per-
spectives. In the first definition, it is considered as a mapping from
the 4D space of lighting and viewing directions to the space of all
2D images:

� : L� V ! I (1)

where L and V are lighting and viewing directions parameterized
by a pair of tilt and azimuth angles (�; �), I is a mapping itself from
R
2 to the RGB color space. This definition basically views a BTF

as a collection of images, and favors texture analysis and synthesis.
We assume every image in a BTF observes a homogeneous

Markov Random Field (MRF) model, which is a common assump-
tion in the texture synthesis literature [12, 39, 42, 44]. Because of
the visual effects caused by varying lighting and viewing directions,
each image in a BTF has a distinct MRF model. MRF methods
model an image as a realization of a local and stationary random
process. That is, each pixel of a texture image is characterized by
a small set of spatially neighboring pixels, and this characterization
is the same for all pixels. A MRF model allows us to view every
BTF image as a collection of local neighborhoods. Each realization
of the MRF model can be viewed as a random rearrangement of
these local neighborhoods in the image plane. We also assume that
the height field inducing the BTF on a material sample observes
a homogeneous MRF model which enables us to synthesize novel
instances of the height field using existing texture synthesis algo-
rithms [12, 39].

In the second definition, we follow the line of previous work on
light fields and plenoptic functions [1, 22, 14], and consider a BTF
as a specific 6D reflectance field if ignoring wavelength and fixing
time:

T = T (�i; �i; x; y; �r; �r) (2)

which provides the connection between reflected flux in a direction
(�r; �r) and incident flux in another direction (�i; �i) at the same
point (x; y) on a material sample. This is a simplified version of
a more general 8D reflectance field in [9] for a general 3D object
enclosed by a convex hull by assuming parallel light sources.

Since a BTF includes images of a material under all possible
lighting directions, it essentially provides lighting-independent ap-
pearance properties of the material. Novel images of the material
under an arbitrary lighting condition can be synthesized from a lin-
ear combination of the BTF images.

2.2 Related Work

Previous work on BTFs aims to capture appearance data for natural
materials and represent them efficiently [7, 8, 21]. However, each
material in the CUReT database [7] has a sparse 4D sampling of
only 205 images under 205 different viewing and lighting condi-
tions. Specifically for each lighting direction L on the half hemi-
sphere with z > 0 and y < 0, 7 images were captured at viewpoints
along short spherical arc between (�X;L), as illustrated in Fig. 1.

Part of our work is inspired by the recent success of 2D tex-
ture synthesis [16, 11, 32, 12, 39, 42, 44]. In 2D texture synthesis,
from a texture sample, a new texture is synthesized such that, when

Figure 1: The sampled lighting and viewing directions of the BTF
images in the CUReT database.

perceived by a human observer, it appears to be generated by the
same underlying stochastic process. To the best of our knowledge,
however, there has been no previous effort on synthesizing 6 dimen-
sional BTFs where textures are under different stochastic processes
under different viewing/lighting settings.

Our work also shares similarity with previous work on image-
based rendering in that novel images of a real scene are generated
from acquired image samples, without [23, 22, 14, 34, 30, 31] or
with [10, 29, 36, 38, 43] the knowledge of the scene geometry.
In particular, our 6D BTF synthesis problem has a similar spirit
as plenoptic modeling where a continuous 5D plenoptic function
is synthesized from discrete samples. Note that BTFs are differ-
ent from surface light fields [40] and view-dependent textures [10]
since the latter two only capture surface appearance under fixed
lighting conditions. Appearance models from real images have be-
come an active research topic in graphics [36, 38, 35, 43, 9].

3 Overview

For the rest of the paper, a viewing/lighting setting means a combi-
nation of viewing and lighting directions. The set of input images
to our method are called the sample images of a real material.

Two factors affect the appearance of bumpy surfaces: the 3D
structure of the bumps and spatial reflectance variations. The geo-
metrical structure produces shadows and occlusions. Both factors
together generate texture and shading effects including highlights.
However, the statistical properties of the 3D structure are more im-
portant than the exact geometry itself because of the random spatial
distribution of the 3D features. The first step in our approach is to
recover the surface geometry.

We represent the surface geometry using a height field on top
of a supporting plane of the surface. From a collection of images
taken under different viewing/lighting settings, we derive the ge-
ometry and its approximate albedo map using a modified version of
the height from shading method in [20]. The modified method can
recover depth variations by incorporating multiple input images in
the formulation. More importantly, we explicitly handle shadows
and possible highlights in the images. These input images are first
globally registered using the video mosaicing technique developed
in [34].

From the recovered height fields we can synthesize other statisti-
cally equivalent height fields that can then be used to generate new
BTFs. By considering the height field as a sample (gray-scale) im-
age, we can apply previously developed 2D texture synthesis algo-
rithms to synthesize novel height fields. The recovered or synthe-

2

To appear in the SIGGRAPH conference proceedings

sized height fields can be used for traditional bump/displacement
mapping.

To synthesize an accurate BTF image from a novel view-
ing/lighting setting, one possibility could be texture mapping the
recovered height field from the sample images followed by view-
ing/lighting dependent interpolation. Unfortunately, there are two
issues here. First, for the recovered height field, the sample im-
ages may be irregularly distributed so that there are no neighboring
images for certain viewing/lighting settings. Second, for the syn-
thesized novel height field, we do not have any sample images at
all. So simply interpolating from neighboring images becomes in-
feasible. Instead, we propose a local appearance preserving texture
synthesis procedure.

Our BTF synthesis algorithm can synthesize a BTF image from
an input height field and two input images. One of the input images
is a template image synthetically rendered from the input height
field. The other is a reference image from the set of real sample
images of the material. Both images should have the same view-
ing/lighting setting as that of the BTF image being synthesized. Ei-
ther a constant albedo or the recovered albedo map can be used for
rendering the template image. This template image exhibits correct
shadows, occlusions for the synthesized height field and approxi-
mate shading effects associated with the material. But it does not
have very accurate color, shading and mutual illumination at each
point since we do not have point-wise 4D reflectance functions on
the material surface at this stage. On the other hand, the reference
image has the correct color and shading information. But its un-
derlying geometry may be different from our input height field.
Our method can combine the useful information from these two
images. It is inspired by the block-copy synthesis method [42].
Compared with the pixel-wise synthesis scheme adopted in most
2D texture synthesis algorithms, the block-copy synthesis scheme
is much faster while maintaining feature integrity. However, we
must be careful about choosing the order to paste blocks. Those
regions with prominent features, such as corners and edges, should
be synthesized first with higher priority.

Ideally, the reference image for our texture synthesis should have
the same viewing and lighting directions as the template image.
Such a reference image may not be available because of the lim-
ited size of the input image collection. Our solution is to find the
“nearest” image, and then make it consistent with the desired view-
ing/lighting setting by warping. A more serious problem is that the
sample image collection may not be distributed uniformly in the 4D
space for lighting and viewing directions. A subspace may not have
any corresponding images at all. When this happens, we exploit a
certain level of isotropy exhibited by the material samples. A ma-
terial sample has a large number of tiny bumps. Being “isotropic”
means that for any bump Bi and any rotation angle between 0 and
360 degrees, there always exists another bump Bj whose shape and
reflectance are rotated versions of Bi’s by the given angle. Most
natural materials approximately satisfy this condition except for
very elongated structures such as straw.

Although a single “nearest” reference image is enough to syn-
thesize a BTF image, the resulting image may be noisy. More ref-
erence images can be used to further improve the synthesis quality.

With the above introduction to our method, we can summarize
the requirements we need to impose on the set of input sample im-
ages: a) The images should cover a reasonable number of random
bumpy structures of a material for the MRF model to work well;
b) for isotropic materials, we need a sparse set of images with their
viewing/lighting settings covering a 3D subspace of the general 4D
space of viewing and lighting directions since the azimuth angle of
the lighting direction is not important here; c) for anisotropic mate-
rials, we need a sparse set of images covering the 4D space.

4 Geometry Recovery

Geometry recovery is a classic problem in computer vision. Many
kinds of geometry recovery algorithms have been proposed using
different visual cues such as disparity, shading, focus and defocus
[13]. We decided to use shading as the major cue to account for
shading variations, which are present in the set of input sample im-
ages because of a changing illumination direction.

4.1 Shape from Shading

To compute the surface geometry, we adopt a shape from shad-
ing technique called height from shading [20]. Unlike most shape-
from-shading methods [18, 4, 25], this technique computes a height
field rather than surface normals. This technique is efficient and ro-
bust. The geometry recovery is formulated to minimize the follow-
ing energy functional [20]:

E =

X
i;j

[�(�R(pij ; qij)� I(i; j))
2
+ �(u

2

ij + v
2

ij)] (3)

where � is the surface albedo, I is the observed image intensity, pij ,
qij , uij , vij are the symmetric first and second finite differences of
the surface height field fzijg, � and � are two constant coefficients,
and R is the Lambertian reflectance model:

R(pij ; qij) =
!
nij �

!

L=
xLpij + yLqij � zLp

p
2

ij + q
2

ij + 1

(4)

where L = (xL; yL; zL) is the unit vector of the light source direc-
tion.

The first term in Eq. 3 corresponds to the photometric error term.
And the second is a regularization term on the smoothness of the
surface. These two terms are balanced by two weights � and �.

4.2 Modifications

It has been shown [20] that the above technique generates good
quality height fields for smooth objects such as human faces. To
deal with shadows, occlusion, or specular highlights which exist
commonly on mesostructure surfaces, we make the following three
significant modifications.

� Albedo function. An albedo function f�ijg is defined over
the surface instead of a constant value. Accordingly, a reg-
ularization term for albedo variation is added to the original
energy function: X

i;j

(s
2

ij + t
2

ij);

where sij and tij are the symmetric second finite differences
of the surface albedo function f�ijg. This albedo regulariza-
tion term is also weighted by another coefficient .

� Classification of pixels. Unlike [20] where each pixel from a
single image has equal weight for calculating photometric er-
ror, we use multiple images fIkg and set a different weight
�k(i; j) for each pixel’s contribution according to its type:
normal pixel, shadow pixel and highlight pixel. Normal pixels
are weighted more than shadow and highlight pixels which are
treated as outliers. Following a Lambertian reflectance model,
we detect outliers using robust statistics [28]. Although [41]
proposed an approach to use multiple images, it does not have
pixel-wise adaptive weights and regularization terms which
are crucial to deal with shadows and specular highlights.

3

To appear in the SIGGRAPH conference proceedings

� Geometry smoothness. The discontinuity features on a sur-
face (e.g., sharp creases, ridges and grooves) call for differ-
ent weights �(i; j) for all surface points in the regularization
term, such that they are not smoothed too much in the recov-
ered geometry. In our implementation, we first determine the
degree of smoothness at all points of the surface by detecting
edges of input images. Then points with larger edge responses
are assigned smaller weights of regularization.

All of the above modifications lead to the following form of ob-
jective energy function:

E =

X
i;j

f�[

X
k

(�ijRk(pij ; qij)� Ik(i; j))
2
�k(i; j)]

+�(u
2

ij + v
2

ij)�(i; j) + (s
2

ij + t
2

ij)g

where

Rk(pij ; qij) =
!
nij �

!

Lk=
xLk

pij + yLk
qij � zLkp

p
2

ij + q
2

ij + 1

(5)

Finally, the non-linear minimization problem is solved numeri-
cally using the conjugate gradient algorithm [27]. An example of
a recovered height field is shown in Fig. 2(c). It is recovered from
the four images shown in Fig. 2(a). For comparison, Fig. 2(b) gives
the recovered height field from the original algorithm in [20].

5 Generating New Geometry

If the recovered height field is regarded as a gray scale image by
converting height values into pixel intensities, we can apply 2D
texture synthesis algorithms to generate new surface geometry. The
height field image indeed exhibits the stochastic properties which
make texture synthesis algorithms work well. Our synthesis al-
gorithm is an accelerated version of the non-parametric sampling
method[12], much similar to the multi-resolution algorithm in [39].
It is based on the MRF texture model, which assumes that pixel val-
ues in a texture are determined probabilistically by their surround-
ing patches [12]. An optimized K-D tree based searching algo-
rithm [24] is applied to accelerate the patch matching process. An
example of synthesized geometry is shown in Fig. 2(d).

6 BTF Synthesis

Given a natural material and a sparse set of sample images of its
BTF, the goal of our synthesis procedure is to generate a com-
plete BTF for a height field that has statistically equivalent meso-
sturctures as the considered material surface. Our approach works
in the same way for both recovered and synthesized height fields.
Basically we need to synthesize images for all viewing/lighting set-
tings. This task cannot be done by running a general 2D texture syn-
thesis algorithm on each image separately, since most of the avail-
able 2D texture synthesis approaches are based on Markov Random
Fields. It is clear this random process cannot output images with
consistent underlying geometry for a changing viewing/lighting set-
ting. As shown in Fig. 3, all the synthesized images are perceived to
have the same statistical features as the original material under cor-
responding viewing/lighting settings. But they cannot be images of
the same BTF because the perceived mesostructure details change
from image to image. The reason is that all images are synthesized
independently, and no constraints on the underlying mesostructure
details are imposed.

BTF images arise not only from spatial variations of surface
reflectance, but also from spatial variations of surface geometry,

which lead to local shading, highlights, inter- reflection, shadowing
and occlusion of local surface elements by neighboring elements.
Note that geometry plays an important role in the generation of tex-
ture appearance. We take advantage of geometry to render a tem-
plate image, and then use it as a constraint during texture synthesis.

6.1 Local appearance preserving texture synthe-
sis

The most important step of the whole process is the actual genera-
tion of BTF images. One of the critical things in this step is to gen-
erate, under a varying viewing/lighting setting, consistent changes
of features caused by the underlying geometry. Therefore, we gen-
erate a synthesized gray scale image of the geometry with features,
such as shadows, occlusions and highlights, under each given view-
ing/lighting setting, and use it as a template texture during texture
synthesis. We allow minor errors in the recovered or synthesized
geometry because the geometry is never used directly for produc-
ing the final images, and is only used for rendering the intermediate
template images. We would like to make sure that every pixel in
the final images is from somewhere in the input sample images to
preserve the appearance of non- geometric features as well. Ob-
viously, we should take pixels from the sample image which were
taken under the same viewing/lighting setting as the BTF image be-
ing synthesized. As mentioned in Section 3, this sample image is
called the reference image.

With a real reference image and a synthetic template image, we
can synthesize a final BTF texture efficiently. We do it block-by-
block, rather than pixel-by-pixel. The main idea of our block-wise
texture synthesis is: for each pixel of the template image, a block of
appropriate size in the reference image is found, which best matches
the corresponding neighboring patch in the template image, and
then copied to the corresponding region centered at the pixel. This
process is repeated until the synthesized image is filled. Since the
reference image is taken from a camera and the template image is
synthetically rendered, similar features of the material sample may
have different intensity and color contrasts in the two images due to
different image formation pipelines. Therefore, the reference image
is converted into a gray scale image and the histograms of the gray
scale template image and reference image are equalized first [16].
Of course, the copied blocks are taken from the original colored
reference image.

Our synthesis algorithm consists of the following three main
steps:

� Feature ordering

� Feature matching

� Block copying

First, we run the Harris feature detector [15] to prioritize all the
pixels of the template image, such that significant features such as
corners will be considered first for synthesis. Then starting from the
highest prioritized pixel, an appropriate surrounding block centered
at this pixel is built and used to find a block with similar features
in the reference image. At last, the found blocks are copied from
the reference image to the corresponding positions in the template
image.

Optimally the size of the blocks should be set adaptively, which
is never an easy task. In practice, our method tests blocks with a
few different predefined sizes and pick the best one. The prede-
fined blocks consist of a series of N � N squares centered at the
pixels. There are still two issues that we need to address. The first
one is how to measure the similarity of two blocks, one of which is
from the template image, and the other is from the reference image.
A criterion can be established on any texture model. For simplicity

4

To appear in the SIGGRAPH conference proceedings

and efficiency, we use the summation of squared differences (SSD),
as in some 2D texture synthesis algorithms. The second one is how
to compare the matching quality among blocks with different sizes.
Since it is unfair to directly compare SSDs between blocks of dif-
ferent sizes, we normalize the SSDs by the number of pixels in each
block.

For efficiency consideration, we do not allow blocks to be over-
lapped at first, so as to prevent pixels from being copied repeat-
edly. However this leads to some unfilled pixels after block copy-
ing. Therefore we need to do hole filling at the end. In fact hole
filling is very similar to block copying except that only a smaller
size for the blocks is used and the small hole-filling blocks are al-
lowed to overlap with other copied blocks. Fig. 4 illustrates the
block copying and hole filling process.

The block matching problem is equivalent to finding the nearest
neighbor in a high dimensional space. This has been extensively
studied, and many acceleration techniques have been put forward.
In this paper, we take a K-D tree based searching algorithm [24] to
accelerate our matching process.

The key to our algorithm, or why we can simply copy feature
blocks at different locations from the reference image, is that we
assume a Markov Random Field model for each BTF image, which
enables us to view an image as a realization of the underlying
stochastic process which randomly rearranges the collection of lo-
cal neighborhoods in the image plane, as mentioned in Section 2.1.

Note that the height field is not directly involved in the block
matching process. But for recovered height fields, we could regis-
ter all input images with the height field and find the best match-
ing block by running block matching on the height field. This can
probably generate more consistent shadowing and occlusion effects
in the synthesized images with different viewing/lighting settings.
However, registration is hard and interpolation of BTF is not ob-
vious. In practice, we have found that block matching without a
height field can generate very good results.

6.2 Reference image generation

In the above synthesis algorithm, a reference image captured from
the real world with the same viewing/lighting setting as that of the
template image is assumed. However that can hardly be achieved
in most situations since dense sampling of the 4D space of view-
ing/lighting settings is prohibitive, and we can only capture a lim-
ited collection of images. The CUReT database mentioned in Sec-
tion 2.2 is such an example. However, the appearance of BTF im-
ages heavily depends on their viewing/lighting settings. In prac-
tice, for those viewing/lighting settings not sampled, we can find
a sample image with the ”nearest” viewing/lighting setting using a
distance metric between two viewing/lighting settings.

Let Ci =< Vi; Li >=< (�Vi ; �Vi); (�Li
; �Li

) >; i = 1; 2, be
two viewing/lighting settings. The distance metric is defined to be

dist(C1; C2) =

p
kV1 � V2k

2 + �kL1 � L2k
2 (6)

where � is the relative weight. A large � value places more em-
phasis on the lighting condition. We measure the distance using the
polar and azimuth angle of the viewing and lighting directions.

For materials with the isotropy we defined in Section 3, the az-
imuth angle is not important, but the difference between the viewing
and the lighting azimuth angles is. Therefore, a more complicated
distance metric is adopted for isotropic materials:

distiso(C1; C2) = min
r
fdist(C1; C2(r)); dist(cC1; C2(r))g (7)

where C(r) is a rotation of C by the angle r around the normal
of the surface, and bC is the reflected version of C about the light-

ing direction of C. This definition of distance between two view-
ing/lighting settings for isotropic materials enables us to make use
of the images for isotropic materials in the CUReT database.

In the following discussion, we assume orthogonal projection,
and that the parallax introduced by the height field on the material
surface is minimal. If the viewing/lighting setting of the ”nearest”
reference image is not the same as that of the synthesized texture,
it needs to be morphed. There are two most important factors to be
considered. One is the foreshortening effect caused by the tilt angle
of the viewing direction, and the other is the azimuth of the lighting
direction. The first one affects the aspect ratio of mesostructure
details, and the second one gives rise to lighting effects such as
highlights and shadow patterns.

Our algorithm can be summarized in three steps.

� First, we back-project the sample image (I0) onto the surface
plane to obtain an intermediate image (I1), according to the
camera parameters used to capture the image.

� Second, we rotate the projected image (I1) around the surface
normal such that the light’s azimuth direction coincides with
that of the synthesized texture. We can perform this transfor-
mation because we assume that the mesostructure distribution
of the geometry is isotropic. The resulting image is called I2.

� Third, the final reference image (I3) is obtained by re-
projecting I2, the rotated version of the back-projected image
I1, onto the target view to maintain correct foreshortening.

6.3 Using multiple reference images

In the above synthesis algorithm, only one closest reference image
is used for each template image. Better results can be obtained by
using more nearby reference images. And the respective results
are weighted and averaged to obtain a final synthesized image. We
use distance-based weights. Let CT be the viewing/lighting setting
of the synthesized image, and IRi

be the reference images with
viewing/lighting setting CRi

, i = 1; 2; :::; M . The weight for each
reference image IRi

is set up as:

exp(�� � dist(CT ; CRi
))PM

k=1
exp(�� � dist(CT ; CRk

))

(8)

where � is a constant coefficient, such that the weight is close to 1
for the nearest reference image, and almost 0 for the furthest one
in the set of chosen nearby images. The scheme enables a smooth
transition when the furthest image is removed from the set and a
new reference image is added. It is an interpolation scheme for
irregularly scattered data, so it works well even when the input im-
age collection does not uniformly sample the viewing and lighting
directions. For sample images with regularly distributed lighting
and viewing directions, quadrilinear interpolation in the 4D space
of viewing/lighting settings would be a more appropriate choice.

6.4 Compression

Compression is needed to reduce the amount of disk space for a dis-
crete BTF. However, it is not the focus of this paper since there are
many existing mature techniques. For example, synthesized BTFs
can be compressed using the clustering technique in [21]. It is also
quite straightforward to extend the compression schemes for sur-
face light fields in [37, 40] to work for BTFs.

7 Results

We have successfully tested our algorithms on a few materials from
the CUReT database, including rough plastic, plaster, pebbles and

5

To appear in the SIGGRAPH conference proceedings

terrycloth. For each material, we recovered a 200x200 patch of
its height field from four images using our revised height-from-
shading algorithm. The four images are chosen to have different
viewing/lighting settings and a relatively small number of shad-
owed pixels. The recovered height fields are then used to synthe-
size novel height fields at 512x512 resolution, which is much larger
than the size of the recovered patches. The BTF synthesis algo-
rithm can run on both recovered and synthesized height fields and
generate complete BTFs from all possible viewing and lighting di-
rections. Our program is able to synthesize a 256x256 BTF image
in five seconds on a Pentium III 800MHz processor and generate all
the images for a 5x12x5x12 grid in the 4D viewing/lighting space
in 5 hours. As a result, the materials can be illuminated from all
directions and viewed from all directions. Since BTFs belong to
lighting-independent surface appearance properties, BTF mapped
objects can be easily rendered together with other objects under
novel illumination in a ray-tracing or global illumination system.

7.1 Comparison with Ground Truth

Fig. 5 gives comparisons on three different materials between syn-
thesized BTF images and their real reference images. Three pairs
of comparisons are shown for each material. Each of the pairs has
a distinct viewing/lighting setting. The synthesized images were
generated from synthesized height fields. Note that there is a dif-
ferent reference image for each synthesized image. The reference
images for the same material are not registered with one another. So
they may have different underlying height fields. Nonetheless, the
synthesized images can be perceived to have consistent underlying
height fields.

7.2 Example images of a synthesized BTF

Fig. 6 shows a plate of synthesized BTF images for rough plas-
tic. The images cover a wide range of lighting directions. The
azimuth angle of the lighting direction varies between -90 and 90
degrees. The tilt angle varies between 45 and 75 degrees. Each row
of images have the same lighting direction, but different viewing di-
rections. Each column of images have the same viewing direction,
but different lighting directions. Half of the images have larger in-
tensities than the rest because they have a smaller tilt angle of the
lighting direction. However, each of the bright images has a dis-
tinct azimuth angle of the lighting direction. So does each of the
dark images. The appearance of the material varies from image to
image because of different locations of highlights and shadows as
well as different intensity levels.

7.3 BTF mapping

BTFs can be easily mapped onto objects whose surfaces are pa-
rameterized on a rectangular region since texture coordinates for
BTF mapping can be set up in the same way as regular 2D texture
mapping. Locally shading BTF mapped surfaces can be carried
out as follows. Given a pair of viewing and lighting directions at
a certain point on the surface, we can find the corresponding BTF
image. From the texture coordinates of that point, we can figure
out which pixel value in the found BTF image should be used as
the reflectance value for the point. Thus, BTF mapping can be im-
plemented as a shader and integrated into any ray-tracing software.
We have implemented a shader for BTF mapping in RenderMan. A
comparison between bump mapping and BTF mapping is shown in
Fig. 7. We can see that BTF mapping can deliver more prominent
shadowing, occlusion and foreshortening effects as well as spatially
varying reflectance. Therefore, the bumps in the BTF mapped im-
age look more protruding and realistic. A scene with multiple ob-
jects rendered from RenderMan using ray-tracing is shown in Fig.

8. Some of the objects are BTF mapped. From these examples, we
can see that BTF mapping can be considered as a basic rendering
function to improve surface appearance.

8 Conclusions and Future Work

In the paper, we presented a novel approach to synthetically gener-
ate bidirectional texture functions. Our approach consists of three
steps. First, it recovers the approximate 3D geometry of surface
details using a shape-from-shading approach. Then, it generates a
novel version of the geometric details that has the same statistical
properties as the sample surface with a non-parametric sampling
method. Finally, it exploits an appearance preserving procedure to
synthesize novel images for the recovered or synthesized geometric
details under various viewing/lighting settings, which then define a
novel BTF. Our experimental results demonstrate that our approach
generates BTFs effectively and efficiently.

There are some limitations of our approach in recovering
mesostructure details. For example, we impose regularization terms
for both geometry and reflectance. Although they have been made
spatially-adaptive to account for discontinuities, it is still difficult to
recover geometry for natural objects such as grass and straw. And
the algorithm for recovering height fields needs a dominant Lam-
bertian component. We would like to address these problems in our
future work.

A related but very difficult problem is recovering both the height
field and point-wise non-diffuse reflectance functions simultane-
ously. If this could be done, we could generate a BTF with all
visual effects without texture synthesis. Mapping BTFs onto arbi-
trary free-form objects would be a desirable operation. It is possible
to achieve this by extending the techniques presented in [26].

References

[1] Adelson, E.H., and Bergen, J.R., The Plenoptic Function and
the Elements of Early Vision, Computational Models of Vi-
sual Processing, MIT Press, Cambridge, Mass., 1991.

[2] Blinn, J.F., Models of Light Reflection for Computer Synthe-
sized Pictures, Computer Graphics, SIGGRAPH’77, Vol.11,
pp.192-198, July 1977.

[3] Blinn, J.F., Simulation of Wrinkled Surfaces, SIGGRAPH’78,
pp.286-292.

[4] Brooks, M.J., and Horn, B.K.P., Shape and source from shad-
ing. Proc. Intern. Joint Conf. Art. Int., pp.932-936, Los Ange-
les, 1988.

[5] Cabral, B., Nelson, M., Rebecca, S., Bidirectional Reflection
from Surface Bump Maps, Computer Graphics, Vol. 21, No.
4, July 1987.

[6] Catmull, E., A Subdivision Algorithm for Computer Display
of Curved Surfaces, Ph.D. Thesis, Report UTEC-CSc-74-
133, Computer Science Department, Univ. of Utah, December
1974.

[7] K. J. Dana and B. van Ginneken and S. K. Nayar and J. J.
Koenderink, ”Reflectance and texture of real world surfaces”,
ACM Transactions on Graphics, Vol. 18, No. 1, pp.1-34, Jan-
uary, 1999.

[8] K. J. Dana and S. K. Nayar, ”3D Textured Surface Modeling,”
Workshop on Integration of Appearance and Geometry-based
methods in Object Recognitions, CVPR 1999.

6

To appear in the SIGGRAPH conference proceedings

[9] Debevec, P.E., Hawkins, T., Tchou, C., Duiker, H.-P., Sarokin,
W., and Sagar, M., Acquiring the Reflectance Field of a Hu-
man Face, SIGGRAPH’2000, pp.145-156.

[10] Debevec, P.E., Taylor, C.J., and Malik, J., Modeling and ren-
dering architecture from photographs: A hybrid geometry-
and image-based approach, SIGGRAPH ’96, pp.11–20.

[11] De Bonet, J., Multiresolution Sampling Procedure for Anal-
ysis and Synthesis of Texture Images, Siggraph’97, pp.361-
368.

[12] Efros, A., and Leung, T., Texture Synthesis by Non-
parametric Sampling, International Conference Computer Vi-
sion, Sept 1999, Corfu, Greece.

[13] Faugeras, O., Three-Dimensional Computer Vision, The MIT
Press, Cambridge, Massachusetts, 1993.

[14] Gortler, S.J., Grzeszczuk, R., Szeliski, R., and Cohen, M.F.,
The Lumigraph, SIGGRAPH ’96, pp.43–54.

[15] Harris, C. and Stephens, M.J., A Combined Corner and Edge
Detector, Alvey Vision Conference, 1988, pp.147-152.

[16] Heeger, D.J., and Bergen, J.R., Pyramid-Based Texture Anal-
ysis/Synthesis, SIGGRAPH’95, pp.229-238.

[17] Heidrich, W., Daubert, K., Kautz, J., and Seidel, H.-P., Illu-
minating Micro Geometry Based on Precomputed Visibility,
SIGGRAPH’2000, pp.455-464.

[18] Horn, B.K.P., and Brooks, M.J., The Variational Approach to
Shape From Shading, Computer Vision, Graphics & Image
Processing, Vol.33, pp.174-208, Feb. 1986.

[19] Koenderink, J., and Van Doorn, A., Illuminance texture due
to surface mesostructure. Journal of Opt. Soc. Am. A 13,
3(1996), pp.452-463.

[20] Leclerc, Y.G., and Bobick, A.F., The Direct Computation of
Height from Shading, CVPR’91, pp.552-558.

[21] Leung, T., and Malik, J., Recognizing Surfaces using Three
Dimensional Textons, International Conference Computer Vi-
sion, Sept 1999, Corfu, Greece.

[22] Levoy, M., and Hanrahan, P., Light field rendering, SIG-
GRAPH ’96, pp.31–42.

[23] McMillan, L., and Bishop, G., Plenoptic Modeling: An
image-based rendering system, SIGGRAPH ’95.

[24] Mount, D. M., ANN Programming Manual, 1998, Dept. Com-
put. Sci., Univ. of Maryland, College Park, Maryland.

[25] Nayar, S.K., Ikeuchi, K., and Kanade, T., Shape from in-
terreflections, International Journal of Computer Vision 6,
3(1991), pp.173-195.

[26] Praun, E., Finkelstein, A., and Hoppe, H., Lapped Textures,
Siggraph’2000, pp.465-470.

[27] Press, W., Flannery, B, Teukolsky, S., and Vetterling, W.,
Numerical Recipes in C. Cambridge Univ. Press, New York,
1988.

[28] Ray, W.J.J., Introduction to Robust and Quasi-Robust Statis-
tical Methods. Springer, Berlin, Heidelberg, 1983.

[29] Seitz, S. M., and Dyer, C. R., Photorealistic scene reconstruc-
tion by voxel coloring, CVPR, 1997, pp.1067-1073.

[30] Shade, J., Gortler, S., He, L.-W., and Szeliski, R., Layered
Depth Images, SIGGRAPH ’98, pp.231–242.

[31] Shum, H.-Y., and He, L.-W., Rendering with Concentric Mo-
saics, SIGGRAPH’99, pp.299–306.

[32] Simoncelli, E., and Portilla, J., Texture characterization via
joint statistics of wavelet coefficient magnitudes, Fifth Inter-
national Conference on Image Processing, Vol.1, pp.62-66,
Oct. 1998.

[33] Smits, B., Shirley, P., and Stark, M.M., Direct Ray Tracing of
Displacement Mapped Triangles, Proceedings of the 11th Eu-
rographics Workshop on Rendering, June 2000, pp.307-318.

[34] Szeliski, R., and Shum, H.-Y., Creating full view panoramic
image mosaics and environment maps, SIGGRAPH 97,
pp.251–258.

[35] Stephen R. Marschner, Stephen H. Westin, Eric P. F. Lafor-
tune, Kenneth E. Torrance, and Donald P. Greenberg, ”Image-
based BRDF Measurement Including Human Skin”, In 10th
Eurographics Workshop on Rendering, pp.139-152, June
1999.

[36] Rushmeier, Holly, Gabriel Taubin and Andre’ Gue’ziec, Ap-
plying Shape from Lighting Variation to Bump Map Capture,
Proceedings of the Eighth Eurographics Workshop on Ren-
dering, June 1997, pp. 35-44.

[37] Nishino, K., Sato, Y., and Ikeuchi, K., Eigen-texture method:
appearance compression based on 3D model, Proceedings of
IEEE Conference on Computer Vision and Pattern Recogni-
tion (CVPR’99), pp.618-624, June 1999.

[38] Sato, Y., Wheeler, M.D., and Ikeuchi, K., Object shape and
reflectance modeling from observation, Proceedings of SIG-
GRAPH’97, pp.379-387, August 1997.

[39] Wei, L.-Y., and Levoy, M., Fast Texture Synthesis using Tree-
structured Vector Quantization, Siggraph’2000, pp.479-488.

[40] Wood, D.N., Azuma, D.I., Aldinger, K., Curless, B.,
Duchamp, T., Salesin, D., and Stuetzle, W., Surface Light
Fields for 3D Photography, SIGGRAPH’2000, pp.287-296.

[41] Woodham, R., Photometric method for determining surface
orientation from multiple images, Shape from Shading, B.
Horn and M. Brookds, Eds. MIT Press, 1989, pp.513-532.

[42] Xu, Y., Guo, B., and Shum, H.-Y., Chaos mosaic: Fast
and memory efficient texture synthesis. Tech. Rep. MSR-TR-
2000-32, Microsoft Research, 2000.

[43] Yu, Y., Debevec, P., Malik, J., and Hawkins, T., Inverse
Global Illumination: Recovering Reflectance Models of Real
Scenes from Photographs, SIGGRAPH’99, pp.215-224, Au-
gust 1999.

[44] Zhu, S., Wu, Y., and Mumford, D., Filters, random fields
and maximum entropy (FRAME)-towards a unified theory for
texture modeling, International Journal of Computer Vision,
27(2):107-126, 1998.

7

To appear in the SIGGRAPH conference proceedings

(a)

(b) (c)

(d)

Figure 2: (a) Four calibrated gray-scale images used for recovering
a height field; (b) a recovered height field from the height-from-
shading algorithm in [20]; (c) a recovered height field from our
revised algorithm; (d) a synthesized height field generated from (c).
Height fields are visualized as gray-scale images in (b)-(d).

Figure 3: Three independently synthesized textures are generated
from three sample images taken at three viewing/lighting settings.
A 2D texture synthesis algorithm is used without knowledge of the
underlying mesostructure details. However, putting together these
synthesized textures does not give us a BTF because they can not
be perceived to have the same geometry. Look, for example, at the
upright corners of these three images. Clearly they are different
geometrically.

(a) (b)

(c) (d)

(e) (f)

Figure 4: Input images and different stages of feature preserving
BTF synthesis. (a) The synthetic gray scale template image; (b)
The real reference image; (c) An initial stage during block copying
when only pixels with high priority are considered; (d) at the end of
block copying, most pixels are covered by nonoverlapping blocks
while gaps among blocks remain as holes; (e) holes are being filled
up with tiny blocks that are allowed to overlap with existing blocks;
(f) the final result of a synthesized BTF image after hole filling. (f)
is synthesized from (a) and (b).

8

To appear in the SIGGRAPH conference proceedings

(a)

(b)

(c)

Figure 5: A comparison on three different materials between
synthesized BTF images(large ones) and their real reference im-
ages(small ones). Three pairs of comparisons are shown for each
material. The reference images are on top of their corresponding
synthesized images. (a) Rough plastic, (b) pebbles, (c) plaster. The
synthesized images were generated from synthesized height fields.
Note that there is a reference image for each synthesized one. The
reference images for the same material are not registered to one an-
other. They may have different underlying height fields. Nonethe-
less, different synthesized images for the same material have con-
sistent underlying height fields.

Figure 6: A plate of synthesized BTF images for rough plastic.
The images cover a wide range of lighting directions. The azimuth
angle varies in a range between -90 and 90 degrees, and the tilt
angle varies between 45 and 75 degrees.

9

To appear in the SIGGRAPH conference proceedings

Figure 7: A comparison between bump mapping and BTF mapping. The left image shows a cylindrical surface with bump mapping under
the illumination of a point light source from the right hand side. The right image shows the same surface with BTF mapping with the same
viewing/lighting setting. We can see BTF mapping has more prominent shadowing, occlusion and foreshortening effects as well as spatially
varying reflectance. Therefore, the bumps in the right image look more protruding and realistic.

Figure 8: A scene with multiple objects rendered from RenderMan. The torus is mapped with a BTF for rough plastic. The vase is mapped
with a BTF for plaster. And the cylinder is mapped with a BTF for terrycloth. We can see small scale shadows among bumps on BTF mapped
objects as well as large scale shadows from ray-tracing. The bottom part of the torus has some redish color coming from interreflection among
the objects. The walls are texture mapped. The floor is bump mapped. The teapot has a metallic BRDF and the sphere is half transparent.

10

Acquisition and Visualization of
Surface Light Fields

SIGGRAPH 2001 Course 46 Notes

Session 5:

Surface Light Fields for 3D Photography

Daniel Wood
University of Washington

1

Surface Light Fields

for 3D Photography

Daniel N. Wood

SIGGRAPH 2001 Course

Collaborators

(on our SIGGRAPH 2000 paper)

Daniel Azuma Wyvern Aldinger

Brian Curless Tom Duchamp

David Salesin Werner Stuetzle

2

Outline

• Surface light field representation

• Overview of compression techniques

• Surface light fields for 3D photography

• Rendering and editing

Surface light fields

3

Lumisphere-valued “texture” maps

Lumisphere

Surface light fields in flatland

u

�

4

Surface light fields in flatland

u

�

Surface light fields in flatland

u

�

5

Compression overview

• Singular value decomposition

– Applied to regions

– Reflection reparameterization

• Vector quantization

Singular value decomposition

SLF

(flatland)

U VT

6

Reconstruction using SVD

Original Rank 1 Rank 7

Separate SVD for regions

7

Reconstruction using regions

Original One region

(rank 5)

Two regions

(rank 5)

Reflection reparameterization

8

Reflection reparameterization

Reflection reparameterization

9

Reflection in flatland

Standard Reflection

Reflection in flatland

Standard Reflection
(rank 5 reconstruction on right)

10

Vector quantization

Original Codebook Vector-

quantized

Vector quantization (unreflected)

Original Codebook Vector-

quantized

11

3D Photography

Goals

Rendering and editing

Inputs

Photographs and

geometry

Requirements

Estimation and

compression

Overview

Data

acquisition

Estimation

and

compression

Rendering

Editing

12

Overview

Data

acquisition

Estimation

and

compression

Rendering

Editing

Scan and reconstruct geometry

Reconstructed geometryRange scans

(only a few shown . . .)

13

Take photographs

Camera positions Photographs

Register photographs

 to geometry

Geometry
Photographs

14

Register photographs

 to geometry

User selected correspondences (rays)

Parameterizing the geometry

Base mesh Scanned geometry

Map

15

Sample base mesh faces

Base mesh Detailed geometry

Assembling data lumispheres

Data lumisphere

16

Overview

Data

acquisition

Estimation

and

compression

Rendering

Editing

Pointwise fairing

Faired lumisphereData lumisphere

17

Pointwise fairing results

Input photograph Pointwise faired

(177 MB)

Pointwise fairing

Many input data lumispheres Many faired lumispheres

18

Compression

Small set of prototypes

Compression / Estimation

Small set of prototypesMany input data lumispheres

19

Reflected reparameterization

Before

After

Median removal

+

Reflected

Median

(“diffuse”)

Median-removed

(“specular”)

+

20

Median removal

Median values Specular Result

Function quantization

Codebook of lumispheres

Input data lumisphere

21

Lloyd iteration

Input data lumispheres

Lloyd iteration

Codeword

22

Lloyd iteration

Perturb codewords to create larger codebook

Lloyd iteration

Form clusters around each codeword

23

Lloyd iteration

Optimize codewords based on clusters

Lloyd iteration

Create new clusters

24

Function quantization results

Input photograph Function quantized

(1010 codewords, 2.6 MB)

Principal function analysis

Subspace of lumispheres

Input data lumisphere

Prototype lumisphere

25

Principal function analysis

Approximating

subspace

Prototype

lumisphere

Principal function analysis

26

Principal function analysis

Principal function analysis results

Input photograph PFA compressed

(Order 5 - 2.5 MB)

27

Compression comparison

Pointwise fairing

(177 MB)

Function quantization

(2.6 MB)

Principal function

analysis (2.5 MB)

Comparison with 2-plane light field

(uncompressed)

Pointwise-faired

surface light field (177 MB)

Uncompressed

lumigraph / light field (177 MB)

28

Comparison with 2-plane light field

(compressed)

Compressed (PFA)

surface light field (2.5 MB)

Vector-quantized

lumigraph / light field (8.1 MB)

Overview

Data

acquisition

Estimation

and

compression

Rendering

Editing

29

View-dependent level-of-detail

Render texture domain and

coordinates in false color

30

Evaluate surface light field

Interactive renderer

screen capture

31

Overview

Data

acquisition

Estimation

and

compression

Rendering

Editing

Lumisphere filtering

Original surface light field Glossier coat

32

Lumisphere filtering

Rotating the environment

Original surface light field Rotated environment

33

Deformation

Original Deformed

Deformation

34

Summary

• Estimation and compression
• Function quantization

• Principal function analysis

• Rendering
• From compressed representation

• With view-dependent level-of-detail

• Editing
• Lumisphere filtering

• Geometric deformations and transformations

Future work

• Better geometry-to-image registration

• More complex surfaces (mirrored, refractive,

fuzzy…) under more complex illumination

• Derive geometry from images

• Combining FQ and PFA

35

Acknowledgements

• Marc Levoy and Pat Hanrahan

– (Thanks for the use of the Stanford

Spherical Gantry)

• Michael Cohen and Richard Szeliski

• National Science Foundation

The end

To appear in the SIGGRAPH 2000 conference proceedings

Surface Light Fields for 3D Photography

Daniel N. Wood1 Daniel I. Azuma1 Ken Aldinger1

Brian Curless1 Tom Duchamp1 David H. Salesin1,2 Werner Stuetzle1

1University of Washington 2Microsoft Research

Abstract

A surface light fieldis a function that assigns a color to each
ray originating on a surface. Surface light fields are well suited
to constructing virtual images of shiny objects under complex
lighting conditions. This paper presents a framework for construc-
tion, compression, interactive rendering, and rudimentary editing
of surface light fields of real objects. Generalizations of vector
quantization and principal component analysis are used to construct
a compressed representation of an object’s surface light field from
photographs and range scans. A new rendering algorithm achieves
interactive rendering of images from the compressed representa-
tion, incorporating view-dependent geometric level-of-detail con-
trol. The surface light field representation can also be directly edited
to yield plausible surface light fields for small changes in surface
geometry and reflectance properties.

CR Categories: I.3.2. [Computer Graphics]: Picture/Image Generation–
Digitizing and scanning, Viewing algorithms

Keywords: surface light fields, 3D photography, lumigraph, light field,
function quantization, principal function analysis, view-dependent level-of-
detail, image-based rendering, wavelets.

1 Introduction

Recent advances in digital cameras, 3D laser scanners and other
imaging technology are enabling us to capture enormous quanti-
ties of geometric and radiance data with unprecedented ease and
accuracy. These advances hold great promise for3D photography,
the process by which both the shape and appearance of physical
objects are modeled and realistically rendered. But to make 3D
photography truly practical, quite a few open problems still need
to be solved.

First, we need a good representation for those 3D datasets. The
framework described in this paper is based on thesurface light
field, a term coined by Milleret al. [22]. The surface light field
is a function that assigns an RGB value to every ray leaving every
point on a surface. When constructed from observations made of
an object, a surface light field encodes sufficient information to
construct realistic images of the object from arbitrary viewpoints.
Surface texture, rapid variation in specularity, and global effects
like interreflection and shadowing are all correctly represented.
Some of these properties can be seen in Figure 1.

However, a good representation by itself is only half the story.
Because the datasets acquired by 3D photography techniques are
so large, goodcompressionalgorithms are needed. Furthermore,
we need algorithms torender those datasets efficiently, ideally at
interactive speeds. To this end, we need to developlevel-of-detail

Figure 1 Images of a surface light field demonstrating detailed
surface texture, rapid changes in specular properties, and interreflec-
tions. The specular variations occur, for example, in the gold paint
on the tail of this porcelain fish. The tail also reflects light onto the
body, as indicated by the reddish hue on the side of the fish in the
left panel.

controlsfor the rendering process, with shape and appearance under
independent control. Finally, just as in traditional 2D photography,
accurately capturing the real world is not sufficient for many appli-
cations; a useful representation for the results of 3D photography
should also beeditable.

In this paper, we address each of these problems. In particular, our
contributions include:

Estimation/compression.Our raw data consists of a set of 2D digi-
tal color photographs of an object together with a collection of laser
range scans. To make a surface light field tractable for rendering,
the data must fit into main memory. To this end we present two new
algorithms that simultaneously estimate and compress the surface
light field. The first is a generalization of vector quantization; the
second is a generalization of principal component analysis.

Rendering. We demonstrate an algorithm that can render our
surface light fields at interactive frame rates. Evaluation of the
surface color takes time proportional to the occupied screen space.
The amount of time required to render the underlying geometry
is controlled using a new view-dependent level-of-detail algorithm
for meshes with subdivision connectivity. The level of geometric
approximation does not affect the sharpness of the surface texture.

Editing. Our representation of surface light fields allows editing,
using 3D analogs of image processing algorithms to filter reflected
light, and modifications of surface geometry. We can simulate
changes in the reflectance properties of the surface, and we can
generate plausible images of the object after it has been deformed
or moved relative to its environment.

To appear in the SIGGRAPH 2000 conference proceedings

1.1 Related work

Surface light fields fit into the broad framework ofimage-based
rendering schemes. Image-based methods take a collection of
photographs as input, construct a representation of the surface color
or radiance, and use it to synthesize new images from arbitrary
viewpoints. The methods tend to differ in the number of input
images they use, the representation of the data, the degree to which
they incorporate geometric information about the object into the
image representation, and the compression techniques they employ.
Our own approach leverages high-resolution geometry to improve
image quality while affording a compact representation.

Levoy and Hanrahan [17] acquire many hundreds of images, which
are resampled to lie on a regular grid in a two-plane parameter-
ization. New images are computed by interpolation between ray
samples, using essentially no geometric data. They apply vector
quantization to obtain compressed representations of light fields.
Gortleret al. [12] present a similar two-plane parameterization that
they call alumigraph, in which they interpolate image samples via
a hierarchicalpush-pullalgorithm. They use approximate surface
geometry derived from photograph silhouettes (or higher-resolution
geometry in the case of synthetic data) to perform a depth correction
that substantially reduces ghosting and blurring artifacts. In both
these methods, the representation restricts the viewpoint to lie
outside of the convex hull of the object. Magnor and Girod [20, 21]
develop an MPEG-like scheme for compressing two-plane light
fields that produces better compression ratios than those obtained
by Levoy and Hanrahan. Our approach depends on both high-
resolution geometry and dense sets of images. It removes the
convex hull restriction of the two-plane light field and admits a new
form of compressed representation that can be rendered in real time.
For comparable data sizes, our representation yields sharper images
and greater compression ratios than two-plane representations.

View-dependent texture mapping[7, 8, 26] is a kind of light field
that does not require resampling the input images. This approach
uses geometric information to re-project each input image into the
desired camera viewpoint. The re-projected input images are then
blended together using weights based on the view direction primar-
ily, and possibly other factors such as sampling rate. Because the
blending in view-dependent texture mapping incorporates visibility
information, this approach supports rendering within the convex
hull of the object. In practice, view-dependent texture mapping has
been used with fewer images and surfaces that are less specular than
those demonstrated with two-plane light fields, though this is not a
fundamental limitation. As noted in Debevecet al. [8], a surface
light field can be viewed as a distillation of view-dependent texture
mapping into a more efficient representation.

Miller et al. [22] use surface light fields to render solutions to
synthetic (non-diffuse) global illumination problems. They apply
JPEG-like image compression techniques to sets of texture maps.
Their technique achieves compression rates for surface light fields
that are comparable to those of Levoy and Hanrahan’s vector quan-
tization method. Walteret al. [31] also use surface light fields to
approximate solutions to global illumination problems. Their rep-
resentation involves basis functions derived from hardware lighting
models, which provides very fast rendering, but does not support
textured surfaces, nor can it adequately model complex phenomena
such as rapidly varying specularity. In addition, problems exist
in the 3D photography realm that do not arise with synthetic
data: most importantly, neither a surface parameterization nor the
radiance along arbitrary rays are knowna priori and must instead
be constructed.

Nishinoet al. [23, 24] generate surface light fields of real objects,
though their images are relatively dense in only one rotational di-
rection. Geometric information is represented by a coarse triangular
mesh. They construct a set of texture maps for each triangle by

projecting each image onto the mesh. Compression is achieved by
performing a principal component analysis on each set of textures.
(Interestingly, the vectors in their analysis are formed by holding
a direction fixed and letting surface location vary. This is the
opposite of our analysis in Section 4.6, where, to form a vector,
we fix a surface location and let direction vary.) Their approach
successfully models objects with simple geometric structure and
smoothly varying specularity. However, it has not been demon-
strated on objects that exhibit both high geometric complexity and
rapid BRDF variation, nor does it provide real-time rendering.

Inverse renderingis an alternative to generating a surface light field.
The goal of these techniques is to estimate the surface BRDF from
images and geometric data. Previous work on inverse rendering
[28, 33] has assumed that the BRDF is piecewise linear with
respect to a coarse triangulation of the surface. Our techniques
require no such assumptions, and, of course, inverse rendering
does not solve the re-rendering problem—a non-interactive global
illumination algorithm is required to produce photorealistic results.
Recent work has extended interactive rendering techniques to a
wider range of lighting models and environments. Cabralet al. [3]
describe a technique for using radiance environment maps to render
objects under arbitrary lighting conditions and with any isotropic
BRDF. Heidrichet al. [13] use texture mapping hardware for the
same purpose but allow a different class of BRDFs. However,
these two methods do not handle global effects like shadows or
interreflection.

1.2 Overview

We have developed algorithms for acquiring light field data of real
objects, and for estimating, compressing, rendering, and editing
their surface light fields. We have tested these algorithms on two
objects, a small ceramic fish with a shiny surface and detailed
texture, and a marble elephant with more complex geometry and
less pronounced specular highlights.

The following sections describe these new algorithms in detail. We
begin by describing our representation of surface light fields (Sec-
tion 2). Next, we discuss our data acquisition process (Section 3).
We then describe our algorithms for estimating and compressing
surface light fields and compare the quality of these methods
to two-plane light fields of similar size (Section 4). Finally, we
discuss our algorithms for rendering and editing surface light fields
(Sections 5 and 6), and present ideas for future research (Section 7).

2 Representation

Roughly speaking, a surface light field is a function that associates
a color to every ray originating from a surface. Our algorithm for
constructing images from a surface light field relies on a good
parameterization of an object’s surface meshM. The methods of
either Ecket al. [9] or Leeet al. [16] yield a parameterization

ϕ : K0 → M ⊂ IR3, (1)

whose domainK0 is a triangular mesh with a small number of faces,
called abase mesh. We use a variant of the algorithm of Leeet al.
to parameterize our scanned geometry.

The parameterization allows us to represent the surface light field
as a function

L : K0 × S2 → RGB, (2)

where S2 denotes the sphere of unit vectors in IR3. Radiance is
represented by points in IR3 corresponding to RGB triples. Ifu is
a point on the base mesh and! is an outward pointing direction
at the surface pointϕ(u), then L(u,!) is the RGB value of the

2

To appear in the SIGGRAPH 2000 conference proceedings

K0 M

n

LiBase mesh Scanned geometry
Lumisphere

ui
e!

!

ϕ(ui)

ϕ

Figure 2 Representation of the surface light field. Pointsu on
the base mesh,K0, are mapped to the geometric surface,M, by
ϕ. The lumisphere,Li at the grid pointui , represents the radiance
leaving surface pointϕ(ui). Directions are denoted by!, or e! after
reflection through the surface normaln as described in Section 4.4.

light ray starting atϕ(u) and traveling in direction!. Although
L(u,!) has no physical interpretation when! is inward pointing,
our compression, rendering, and editing techniques rely onL being
defined over the entire direction sphere.

We make the simplifying assumption thatL(u,!) is piecewise
linear in!. To make this more precise we have to define what we
mean by a piecewise-linear function onS2. It is not difficult to verify
that the map

h(!) ≡ (sin−1 ωx, sin−1 ωy, sin−1 ωz)

| sin−1 ωx| + | sin−1 ωy| + | sin−1 ωz| (3)

is a homeomorphism betweenS2 and the regular octahedron with
vertices (±1,±1,±1). We useh because it introduces less distor-
tion than radial projection and yet can be evaluated quickly using a
lookup table for sin−1.

Composition withh induces a bijection between functions on the
octahedron and functions on the sphere. We say that a function
F(!) is piecewise linearif it is piecewise linear with respect to
an s-times-subdivided octahedron,i.e., the mesh resulting froms
four-to-one subdivisions of the octahedron. We call a piecewise-
linear RGB-valued function alumisphere, and we letCs

PL denote
the vector space of all lumispheres.

With these definitions, the surface light fieldL can be represented
by a function, whose domain isK0 and whose range isCs

PL, that
sends a pointu on K0 to the lumisphereL(u, ·). This definition can
be described compactly in mathematical notation as follows:

K0 → Cs
PL : u 7→ L(u, ·) (4)

We have chosen subdivision levels = 3 in all our examples. In
this case the space of lumispheres has dimension 3× 258 = 774.
We arrived at this value experimentally. Settings = 2 results in
noticeable degradation in the image quality, whiles = 4 gives little
improvement at the expense of higher dimension.

It is useful to think of a surface light field as a lumisphere-valued
texture map, which assigns a lumisphere instead of a single color to
each texel. There is one rectangular texture map for each triangle
in K0. The K0 triangle is mapped to the lower-left corner of its
rectangle, and the upper right corner is unused. (For compactness
we store pairs of texture maps interleaved in memory.) As in
conventional texture mapping, each texture map is divided into
square texels, and these texels define a partition of each face ofK0

into cells. The surface light fieldL is thus piecewise-constant with
respect to this partition ofK0. Let ui denote the center of thei-th
cell. Cell dimensions (correspondng to the texture map resolution)

are chosen so that the imagesϕ(ui) andϕ(uj) of any two adjacent
grid pointsui anduj are separated by at most one pixel in the image
plane of each camera. We denote the lumisphere at the grid pointui

by Li—that is,Li(!) ≡ L(ui ,!).

Figure 2 illustrates key aspects of our notation.

3 Data acquisition

Acquiring the raw data to build a surface light field for a real object
requires four steps: (1) range scanning the object, (2) building a
mesh to represent its geometry, (3) capturing a collection of images
of the object, and (4) registering the images to the mesh. Because
the techniques presented in this paper do not depend on the specifics
of our acquisition process, we present only a brief summary here of
the procedure that we have used successfully.

Range scanning.We took a number of range scans of each object
using a Cyberware Model 15 scanner. Glossy objects like the fish
and elephant are not ideal candidates for laser scanning. To improve
laser returns, we coated them with a removable powder. The fish
was built from 36 scans, and the elephant from 49.

Reconstructing the geometry.The scans were registered using a
small number of hand-selected point correspondences to initialize
a global iterated closest-points algorithm [2, 10]. The registered
scans were merged into a single triangle mesh using the volumetric
method described by Curless and Levoy [6]. The final meshes
representing the surfaces of the fish and elephant contain 129,664
triangles and 311,376 triangles, respectively.

Acquiring the photographs.We used a camera attached to a spher-
ical gantry arm to capture photographs from poses spaced roughly
evenly over the sphere. The camera positions were known relative
to one another, but not relative to the objects being photographed.
We took 638 photographs of the fish and 388 photographs of
the elephant, together with photographs of a calibration pattern,
which we used to determine the intrinsic camera parameters using
Tsai’s method [30]. During acquisition, the camera and gantry arm
occasionally cast shadows onto the object. Because we wanted to
capture the object under fixed lighting conditions, we manually
removed photographs taken under those circumstances.

Registering the photographs to the geometry.We registered the
set of photographs to the reconstructed mesh with user assistance.
By hand-selecting correspondences between points on the mesh
and points on a small subset of the photographs, we generated
a list of 3D point-to-ray correspondences. We then registered
the photographs to the geometry using an iterated closest-points
algorithm.

4 Estimation and compression

Once we have acquired the raw image and geometric data, we must
estimate a surface light field that approximates that input. This
section describes three estimation techniques; the latter two directly
create compressed representations.

4.1 Assembling data lumispheres

The first step in the estimation process is the construction of a
useful intermediate representation, consisting of adata lumisphere
for each grid point in the surface light field. A data lumisphere is
a set of samples from a full lumisphere, each consisting of a color
and a direction corresponding to an observation of a grid point. We
useLi to denote the data lumisphere associated with pointui on the
base mesh. Assembling data lumispheres is a resampling problem
that we solve separately for each grid point on the base meshK0.

Consider a fixed grid pointui , and letcij denote the RGB value of
the point in thej-th photograph defined by the ray fromϕ(ui) to the

3

To appear in the SIGGRAPH 2000 conference proceedings

(a) (b) (c)

Figure 3 Lumispheres from a point under the elephant’s trunk. (The
surface normal points directly out of the page.) The swath of missing
points were occluded by the trunk. (a) Data lumisphere. (b) Faired
piecewise-linear lumisphere. (c) Faired lumisphere with vertices
shown as constant-colored Voronoi regions (used for illustration
only).

location of thej-th camera. The valuecij is computed by bilinear
interpolation in thej-th photograph. Some or all of thecij might
be invalid because the pointϕ(ui) may not be visible from thej-th
camera position. Ifϕ(ui) is visible, we find the direction vector!ij

from ϕ(ui) to the location of cameraj and add the pair (cij ,!ij) to
the data lumisphereLi for grid pointui . Figure 3(a) shows the data
lumisphere for a point on our elephant.

To determine ifϕ(ui) is occluded with respect to thej-th camera, we
render, from the perspective of that camera, both the original mesh
M and additional geometry that conservatively bounds the platform
on which the object rests. (Because the platform obscures parts of
the objects in some photographs, we add geometry representing
the platform to ensure that we do not project the platform onto the
object.) The depth buffer gives us adepth image, which we compare
to the depth of each pointϕ(ui) to determine if it is visible.

4.2 Pointwise fairing

Our first estimation algorithm,pointwise fairing, constructs a
piecewise-linear lumisphere from each data lumisphere indepen-
dently at each surface point. If the data covered the entire direction
sphere, we could estimateLi using the standard least-squares proce-
dure of settingLi to be the lumisphere inCs

PL that best approximates
the data lumisphere:

Li = argmin
F∈Cs

PL

Edist(F,Li) (5)

The argmin notation evaluates to the value of its subscript that
minimizes the expression to which it is applied. Here,F is a
lumisphere, andEdist(F,Li) measures how wellF approximatesLi :

Edist(F,Li) ≡ 1
|Li |

X

j∈visible cameras

|F(!ij) − cij |2 (6)

where |Li | is the number of observed color values in the data
lumisphereLi .

But the physical light field at any point on the surface is only de-
fined on the hemisphere of outward pointing directions. Moreover,
due to self-occlusion and constraints on the camera poses, the data
samples often do not cover the entire direction hemisphere (see
Figure 3). The fitting problem (Equation (6)) is under-determined,
and it is therefore necessary to regularize it by adding a fairing term.
We use a discrete approximation to the thin-plate energy:

Ethin(F) ≡ Ns

4π

X

k

|∆PLF(!k)|2 . (7)

The sum ranges over the vertices of thes-times-subdivided octa-
hedron (withNs vertices, each corresponding to a direction!k),

and∆PL denotes the umbrella Laplacian [29]. The regularized error
function is then

Eλ(F,Li) ≡ Edist(F,Li) + λ Ethin(F) . (8)

We use conjugate gradients to find the lumisphereF that minimizes
Equation (8). Figures 3(b) and 3(c) show the faired lumisphere
generated from the data lumisphere in Figure 3(a). The fairing
term dampens the directional variation in the fitted lumisphere. It
has little physical significance, and our data is relatively free of
noise; we therefore chooseλ small so thatEdist dominates. Note
that our fairing procedure assigns values toL(u,!) at all directions
! ∈ S2, including directions far away from any observations, and
even directions pointing into the object.

Figure 4 illustrates the effects and the limitations of pointwise
fairing. Figure 4(a) shows one of the actual photographs of the fish,
and Figure 4(b) shows the same view of the uncompressed light
field generated from all the photographs. The light field rendered in
Figure 4(c) was generated after all photographs from viewpoints
inside a cone of radius 10◦ about the viewing direction were
removed. There is little degradation. In Figure 4(d) the radius of
the cone was increased to 20◦. Clearly the gap in directions has
become too large for pointwise fairing to accurately approximate
the actual surface light field.

4.3 Compression overview

BecauseCs
PL is a high-dimensional space, a complete pointwise-

faired surface light field may be very large. To generate a more
compact surface light field, we will represent each lumisphere as
a weighted sum of a small number of prototype lumispheres using
two distinct methods, one analogous to vector quantization, and the
other analagous to principal component analysis. Each lumisphere
Li can then be replaced by an index (as in vector quantization) or
a set of coefficients (as in principal component analysis) indicating
contributions from the prototypes.

A naive application of vector quantization or principal component
analysis might treat as input the pointwise-faired lumispheres
viewed as vectors in the spaceCs

PL. Observe, however, that the
RGB values for at least half of each lumisphere—corresponding
to directions pointing into the object—are mostly fiction generated
by the fairing process. If we were to apply vector quantization or
principal component analysis to the pointwise-faired lumispheres,
these fabricated values would have the same influence as values in
directions where we actually have data. This is clearly undesirable.

A more principled compression approach would use only observed
data. The data, however, is an irregular and incomplete sampling
of each lumisphere. We have therefore developed two new esti-
mation/compression methods,function quantizationandprincipal
function analysis, which are similar in spirit to vector quantization
and principal component analysis, but are driven by irregularly
spaced data and avoid the intermediate pointwise-fairing step.

Before discussing our compression algorithms, we present two
transformations of the surface light field that increase spatial coher-
ence among lumispheres, thereby making them more compressible.

4.4 Median removal and reflection

The first transformation ismedian removal. Let mi denote the RGB
value obtained by computing the median color of data lumisphere
Li (separately for each color channel). We use the median rather
than the mean because it is robust against outliers and more
accurately represents the bulk of the data. The collection of median
values can be viewed as a texture map over the surface, roughly
encoding the diffuse component of the surface light field. We store
this “diffuse” texture map separately and then encode the residual

4

To appear in the SIGGRAPH 2000 conference proceedings

(a) (b) (c) (d) (e)

Figure 4 Analysis of estimation with missing data. (a) Photograph taken by a selected camera. (b) Faired surface light field using all
photographs. (c) Faired surface light field after first removing from the input data all photographs in a cone of radius 10◦ about the direction
shown. (d) Faired surface light field with a cone of radius 20◦ removed. (e) Compressed surface light field with principal function analysis of
order 3 after first removing the same cone of radius 20◦. Note that the compressed surface light field reproduces the specularity of the input
better than the pointwise-faired version when a significant portion of the input data is removed.

(a) (b) (c)

Figure 5 Increasing lumisphere coherence via reflection reparam-
eterization. (a) Surface light field. (b) Transect ofL(u,!). (c)
Transect ofeL(u, e!). Horizontal axis shows position ofu along white
line across fish (a). Vertical axis shows position of! (b) or e! (c) on
a user-selected great circle. Note that in the right panel the specular
highlights are much better aligned.

surface light field after subtracting the diffuse component. This
serves two purposes. First, if we compress only the residual surface
light field, any diffuse texture will be exactly preserved. Second,
the residual will be more compressible if the specular behavior of
the surface is simpler than the diffuse (e.g.,an object with diffuse
texture and a glossy coat.) Median removal before compression is
analogous to mean-removed vector quantization [11].

The second transformation,reflection, is a reparametrization of the
lumispheres. Letn be the unit surface normal at a surface. Then for
a direction! ∈ S2, let e! be the reflection of! about the normaln
(transformed quantities will always be denoted with a tilde ‘e ’):

e! ≡ 2 (n · !) n − !. (9)

Similarly, the reflected (and median-removed) surface light fieldeL
is defined at each grid point by:

eLi(e!) ≡ Li(!) − mi . (10)

Where, by Equation (9),! is e! reflected around the surface normal,
ni , at thei-th grid point. Obviously,eL (plus the diffuse texture map)
contains the same information asL. To see why we expect the
reflected reparameterization to increase spatial coherence, consider
the three elements that determine the lumisphereLi at a point:
the incoming radiance, the BRDF and the normal. First, assume
that the incoming radiance at two pointsui and uj is the same;
this is approximately true for points that are nearby relative to
the sources of light illuminating them. Second, assume that the
BRDF is reflective. Areflective BRDF[3] is one that reflects the
incoming radiance through the surface normal and then convolves
with a “direction-invariant” filter (i.e.,a space-invariant filter, where
space is restricted to the surface of the sphere of directionsS2). As
observed by Rusinkiewicz [27], many BRDFs are approximately
reflective. If these two assumptions hold, the reflected lumispheres

eLi andeLj will be the same even if the normalsni andnj are different.
For an example, consider the case of a perfect mirror surface and an
environment that is infinitely far away. Ignoring non-local effects
such as occlusions and interreflections, all of the reparametrized
lumispheres will agree on their overlap because they contain parts
of the same environment map. If the surface had some roughness,
then the lumispheres would be blurred, reflected images of the
environment, but they would still roughly agree on the overlap.
Figure 5 illustrates the effect of reparameterization for the fish,
whose environment consists of several small light sources.

We always estimate and store median-removed and reflected lu-
mispheres; however, the transformations have no effect on the
pointwise-fairing algorithm.

4.5 Function quantization

Function quantizationis a generalization of vector quantization
to the case of irregularly sampled data. The goal is to construct
a codebookcomprised of a collection of prototype lumispheres
(codewords) {P0, . . . , Pn} and a map assigning to each grid point
ui ∈ K0 a codeword indexki , and thereby a codewordPki . For
a givenn, the codebook and map should minimize the combined
energy over all data lumispheres,i.e.,

P
i Eλ(Pki , eLi). This formu-

lation is different from vector quantization in that the inputs (data
lumispheres) are not vectors.

Function quantization starts with an initial codebook consisting of
a single lumisphere and a smalltraining setof randomly selected
grid points. It proceeds by alternating betweencodebook fittingand
codeword splitting, until the codebook reaches a user-specified size.

Codebook fitting is accomplished via Lloyd iteration [11],i.e., by
repeatedly applying the following two steps:

1. Projection: For each grid pointui in the training set, find the
indexki of the closest codeword:

ki = argmin
k

Eλ(Pk, eLi). (11)

This partitions the training set into clusters of grid points that
project to the same codeword.

2. Optimization:For each cluster, find the best piecewise-linear
lumisphere:

Pk = argmin
F∈Cs

PL

X

i∈clusterk

Eλ(F, eLi) , (12)

where the summation is over all of the data lumisphereseLi in
thek-th cluster.

We perform the optimization steps using conjugate gradients. The
iteration terminates when the decrease in error between succes-
sive codebooks falls below a user-defined threshold. Then, if the

5

To appear in the SIGGRAPH 2000 conference proceedings

(a) (b) (c) (d)

Figure 6 Comparison of different estimation techniques applied to the fish. (a) Pointwise faired surface light field. (b) Function quantization
with 1024 codewords. (c) Principal function analysis with subspace dimension 2. (d) Principal function analysis with subspace dimension 5.

Figure 7 Comparison of compressed elephant surface light field
with input photographs. Left: Elephant photographs. Right: Ele-
phant surface light field (5.3 megabytes encoded with principal
function analysis, subspace dimensionq = 2). Note that the image
on the bottom right shows a part of the elephant that was occluded
in the corresponding photograph. Also note that some points on the
very bottom of the elephant were not seen by any camera (using our
conservative approximation of the platform) and are black.

codebook is smaller than desired, codeword splitting doubles the
codebook size by cloning each codeword and adding a small
perturbation to the clone. After a codebook of the desired size has
been found, codewords are assigned to all grid points by projecting
all the corresponding data lumispheres (not just those in the training
sample) onto the codebook.

4.6 Principal function analysis

Principal function analysis, based on principal component analysis,
is an alternative to function quantization. For a given set of data
vectors and a given approximation dimensionq, principal com-

ponent analysis finds theq-dimensional affine subspace that best
approximates the data vectors in the least squares sense. As in the
case of function quantization, we must generalize this approach to
the case of irregularly sampled data.

Our goal, then, is to find theq-dimensional subspaceV ⊂ Cs
PL

that best approximates all of the data lumispheres in the training
set. Each lumisphereeLi is represented by the pointF ∈ V that
minimizes Eλ(F, eLi). We call F the projection of eLi onto V, or
πV(eLi). OverloadingEλ, we view it as a function ofq-dimensional
subspaces ofCs

PL; it measures how well a subspace approximates
the data lumispheres in the training set,i.e.,

Eλ(V) ≡ 1
T

X

i

Eλ(πV(eLi), eLi) . (13)

The summation is over all grid point indices in the training set, and
T is the size of the training set.

While principal component analysis reduces to an eigenvalue prob-
lem, we have not succeeded in finding a corresponding formulation
for minimizing the functional defined in equation (13). We have
therefore taken a different approach.

Eachq-dimensional affine subspace ofCs
PL can be expressed as the

affine span ofq + 1 prototype functions, andEλ can be regarded as
a functional on the space of (q + 1)-tuples of prototypes. SinceEλ

depends only on the affine span of the prototypes, minimizingEλ

will not uniquely determine the prototypes.

To address the uniqueness problem, we consider a new functional:

Eλ,µ(P0, . . . ,Pq) ≡ Eλ(V) + µ
X

k∈0,...,q

‖Pk − Pmean‖2 (14)

whereP0, . . . ,Pq are the prototypes definingV, andPmean is their
mean, and where the projectionπV(eLi) of a data lumisphereeLi

is restricted to lie inside the convex hull of the prototypes. (The
squared norm of a lumisphere,‖F‖2, is the sum of the squared
norms of the vertex values divided by the number of vertices.) This
additional spring energy term penalizes widely-spaced prototypes.
Minimizing it is a non-linear optimization problem, which we solve
via conjugate gradients. After the subspace has been determined by
selection of the prototypes, we assign barycentric coordinates to all
grid points by projecting all corresponding data lumispheres (again,
not just those in the training sample) onto the subspace.

6

To appear in the SIGGRAPH 2000 conference proceedings

(a) (b) (d) (e)

Figure 8 Comparison of a surface
light field with a geometry-corrected
two-plane light field. (a) Photograph.
(b) Surface light field pointwise faired
(180 MB). (c) Two-plane light field un-
compressed (180 MB).

(d) Surface light field compressed us-
ing principal function analysis of di-
mension 5 (2.5 MB). (e) Surface light
field compressed using function quanti-
zation with 1024 codewords (2.7 MB).
(f) Two-plane light field compressed
using vector quantization with 16384
codewords (8.1 MB).

(c) (f)

4.7 Compression results

We tested the various estimation and compression algorithms on the
surface light fields of both the fish and elephant. Figure 6 compares
results of the different methods. Figure 6(a) shows two views of the
uncompressed (pointwise-faired) fish, the entire model (top) and
a closeup of the tail fin (bottom). This data set contains 176 MB
of color data, plus 0.7 MB for geometry and normals. Figure 6(b)
demonstrates function quantization with 1024 codewords, resulting
in a color data size of 2.7 MB. Figures 6(c) and (d) illustrate
principal function analysis with subspace dimensions 2 and 5,
resulting in color data sizes of 1.7 MB and 2.3 MB, respectively.
Note that the 2-dimensional principal function analysis example,
with its total file size of 2.4 MB (1.7 MB color + 0.7 MB geometry),
results in more than 70:1 compression.

Overall, principal function analysis leads to smoother images than
function quantization; function quantization introduces artifacts
such as jagged edges on the fish’s tail. However, function quantiza-
tion is more accurate, better preserving the color of highlights and
effects such as interreflections that are lost during principal function
analysis.

Not surprisingly, increasing the dimension of the subspace in
principal function analysis improves the quality of the results;e.g.,
dimension 5 produces highlights substantially sharper and brighter
than dimension 2. Rendering time, however, is asymptotically
linear in the dimensionq. Currently, other costs dominate when the
dimension is low, and in our examples, dimensions 2 and 5 can
be rendered at roughly the same speed. By contrast, the rendering
time for a function-quantized surface light field is independent of
codebook size (ignoring the effect of the memory hierarchy). The
complementary strengths of function quantization and principal
function analysis suggest a hybrid approach (see Section 7).

We achieved similar compression results with the elephant. A
pointwise-faired elephant requires 409 MB of color data and
1.6 MB of geometric data. Applying principal function analysis
with a 2-dimensional subspace compresses the elephant’s color data
to 3.7 MB.

Figure 7 compares synthesized images of the elephant with the
photographs. The compressed surface light field captures most of
the features of the input data, but the highlights are less bright. In

addition to the lower dimension of the subspace, the lower fidelity
may be a result of the fact that the scanned geometry of the elephant
appeared to be of lower quality than that of the fish. Errors in the
geometry, particularly the normals, adversely affect the quality of
the compression. Note also that, even though the bottom reconstruc-
tion includes the feet of the elephant, which were not visible in the
corresponding photograph, our compression algorithm succeeds in
inferring plausible shading and highlights for that part of the model.
The compressed representation is essentially a learned model of
lumispheres; the unseen portions of data lumispheres are filled in
by finding the closest lumisphere in the model. Figures 4(d) and
(e) also show that principal function analysis can produce more
realistic highlights than pointwise fairing given incomplete data
lumispheres.

We have done an informal comparison of image quality between
a surface light field and a two-plane light field. We constructed
a two-plane light field of the fish with six slabs arranged along
the faces of a cube. The resolution of the light field, 4002 for the
far plane and 82 for the near plane, was chosen to approximately
match the corresponding resolutions of the surface light field: the
far-plane resolution matches the input photograph resolution, and
the near-plane resolution approximately matches the surface light
field’s directional resolution. The resulting raw data size is about
180 MB, the same size as our pointwise-faired (i.e.,uncompressed)
surface light field. The input images were resampled into the two-
plane parameterization offline using the scanned fish geometry and
view-dependent texture mapping. We then compressed the data
using the vector quantization technique (and software) of Levoy and
Hanrahan [17], using their default settings: a codebook of 16384
2×2×2×2×3 codewords (i.e., 2×2 camera positions, 2×2 image
pixels and 3 color channels). All of the renderings of two-plane light
fields use the geometry correction technique of Gortleret al. [12].

Figure 8 compares images generated from uncompressed and com-
pressed surface light fields with corresponding images generated
from the two-plane light field. The uncompressed data sets give
reproductions of similar quality, although the two-plane light field’s
quadralinear interpolation has different filtering characteristics.
When compressed, the surface light field produces more compelling
reproductions even though the compressed two-plane light field
data (8.1 MB + geometry) is more than 3 times the size of the
compressed surface light field (2.5 MB + geometry).

7

To appear in the SIGGRAPH 2000 conference proceedings

False color Light field
Model Faces (secs/frame) (secs/frame)

top uniform 102,400 0.36 0.59
bottom LOD 5823 0.07 0.31

Figure 9 View-dependent level-of-detail. Left: Geometry visualiza-
tion. Right: Surface light field. Top: Uniform subdivision,r = 4.
Bottom: View-dependent level-of-detail with error terms chosen to
match the uniform subdivision. Shown in the table, very bottom,
are rendering times, first for false color only (the step that uses
geometry), and second for the entire surface light field rendering
algorithm.

The near-plane resolution of the two-plane light field we con-
structed, though comparable in angular resolution to our surface
light field, is lower than those demonstrated by Gortleret al.
and Levoy and Hanrahan. We have observed that lowering this
resolution results in artifacts such as erroneous interpolation among
rays that strike quite different surface points due to occlusion.
Azuma [1] discusses this effect and other difficulties inherent in
reduction of the near-plane resolution.

5 Rendering

In this section we present an interactive surface light rendering al-
gorithm. Our implementation runs entirely in software and achieves
interactive rates on PC-class hardware without 3D acceleration.

5.1 Basic algorithm

Rendering a surface light field from an arbitrary viewpoint is
conceptually straightforward. Each pixel in the image plane of the
camera defines an incoming ray in some direction!. Suppose the
ray intersects the mesh at a pointϕ(ui), corresponding to a point
ui ∈ K0. Then the RGB value of the pixel isL(ui ,!). Since we
actually encode the reparameterized surface light fieldeL(ui , e!) at
each point, we must reflect the viewing ray about the normal before
looking up the RGB value. To facilitate this process, we compute
and store anormal mapn(u) over the surface, so that we can quickly
determine the normaln(ui) at a grid point.

We render the surface light field in two passes. In the first pass
we determine, for each pixel of the virtual camera, the pointui

corresponding to the surface pointϕ(ui) seen at that pixel, encoded
as a face ID and barycentric coordinates. We do this efficiently by
rendering the mesh in false color with Gouraud shading, using two
of the framebuffer’s four color channels to encode the index of the
base mesh face, and the remaining two to encode the barycentric
coordinates within the face.

In the second pass, we scan the frame buffer. For each pixel in
the virtual camera we incrementally compute the direction! of
the incoming (viewing) ray using a single 3-vector addition at each
pixel. We computee! by reflecting through the surface normaln(ui)
atϕ(ui). Finally, we evaluateeL(ui , e!) by looking up the lumisphere
associated withui and evaluating the piecewise-linear function in
direction space. These operations can be done quickly with just a
few floating-point operations.

5.2 View-dependent refinement of geometry

One feature of the surface light field representation is the de-
coupling of the surface geometry from the light field. For best
results, we can render the surface geometry at the highest resolution
during the first pass of the rendering algorithm, but this can be
costly. Alternatively, we can render a simplified mesh (e.g., the
embedding of the base mesh triangles in IR3) and still achieve a
compelling result because surface light fields, like bump-mapped
lighting, suggest more geometric detail than is actually present.
However, this simplified mesh introduces some distortion; more-
over, the coarse silhouettes are often objectionable. Instead, we
have explored a middle ground between those two extremes:view-
dependent refinementof the subdivision-connectivity surface mesh.

Most current methods for real-time, view-dependent simplification
of geometry, such as those presented by Hoppe [15] and Xia
and Varshney [32], employ progressive mesh representations and
adapt the level of detail using edge collapses and vertex splits.
For a texture-mapped surface, however, these operations can cause
considerable parametric distortion, especially near the boundaries
of parameter domains, placing significant constraints on the simpli-
fication [5]. Therefore, we restrict the mesh used for rendering to
have four-to-one subdivision connectivity [18], and refine the mesh
by adding and removing lazy wavelets [4]. This allows us to modify
the geometric detail almost independently of the parameterization.

We approximate the mapϕ : K0 → M ⊂ IR3 by a piecewise-
linear mapϕr : Kr → IR3 on the simplicial complexKr obtained
by applying r four-to-one subdivisions to the base complexK0

and settingϕr (v) = ϕ(v) for each vertexv of Kr . The subdivision
level r is a user-defined parameter (r = 4 in Figure 9). We then
compute the lazy-wavelet expansion ofϕr , expressing it as a sum
of hat functions. Adapting the mesh can now be formulated as
finding a partial sum of those hat functions, satisfying a set of view-
dependent properties.

(b)(a) wavelet
addition

wavelet
subtraction

Figure 10 (a) Lazy wavelet addition and subtraction. The support
of the added hat function is shown in blue. (b) T-vertices (circled in
red) are eliminated by adding edges.

The retriangulation procedure is an incremental algorithm that ex-
ploits frame-to-frame coherence, similar to algorithms described by
Hoppe [15] and Xia and Varshney [32]. To compute the approxima-
tion for a frame, we begin with the approximation computed for the
previous frame and modify it by applying thelazy-wavelet addition
andlazy-wavelet subtractionoperations, illustrated in Figure 10(a),
according to view-dependent criteria. To reduce the appearance of
“popping,” we spread the visual effect of each operation over time
by geomorphing [14]. In a second quick pass over the mesh, we
add temporary edges to eliminate cracks caused by “T-vertices,” as
shown in Figure 10(b).

8

To appear in the SIGGRAPH 2000 conference proceedings

Our criteria for wavelet addition and subtraction are the same
three view-dependent refinement criteria described by Hoppe [15]:
(1) removing wavelets that are completely backfacing, (2) removing
wavelets lying completely outside the view frustum, and (3) main-
taining a screen-space error bound. To accelerate computation of
screen-space error, we construct, in preprocessing, a bounding
volume around the set of geometric error vectors associated with
a wavelet addition. We have found that an ellipsoid aligned to
the surface normal generally provides a tighter bound than the
shape used by Hoppe, while not adding significantly to the cost
of projecting the error volume. Because coarse silhouettes tend
to be more noticeable than interior distortion, we use a smaller
error tolerance near the silhouette [19]. Finally, to reduce the
number of wavelet addition and subtraction operations that must
be considered, we enforce one additional property: A hat function
at level` ≤ r, centered at an edge ofK`−1, may appear in the sum
only if the hat functions centered at the endpoints of the edge appear
in the sum.

The results of view-dependent level-of-detail are illustrated in Fig-
ure 9, showing a close-up of the elephant’s trunk. While achieving
high accuracy, the top renderings using uniform subdivision render
fairly slowly due to the large number of triangles. The bottom
renderings, using the view-dependent level-of-detail algorithm with
error threshholds set to match the fine geometry renderings, are
obtained with far fewer triangles yielding moderately improved
frame rates with little visual difference.

The close-up views shown in Figure 9 benefit greatly from the view
frustum test, which causes a considerable fraction of the model to
be coarsened. In the other common case, where the entire model
is visible, using view-dependent level-of-detail does not give as
significant of a performance benefit, but it does no worse than a
static model. Of course, if the model is very distant, the level-of-
detail algorithm will generate a very coarse approximation.

6 Editing

Just as the decoupling of surface geometry and the light field allows
us to refine the geometry independently, we are now able to perform
editing operations that are not commonly possible in an image-
based rendering context. In this section we describe three such
operations: lumisphere editing, rotating the object relative to its
environment, and deforming the geometry.

By performing simple image processing directly on the lumi-
spheres, we can simulate changes in surface properties, such as
sharpening of specular highlights. We demonstrate this particular
operation in Figures 11(a) and (b), where the highlights in the
original rendering (a) have been brightened and sharpened (b). We
achieve this effect by applying Perlin’s bias function [25] to the val-
ues of every lumisphere. For compressed surface light fields, we can
quickly approximate this by adjusting the prototype lumispheres.
(For principal function analysis, this is only an approximation
because the bias function is non-linear.)

The other two editing operations we illustrate, rotation of geometry
relative to its environment and general deformation, fit into one
conceptual framework: a transformation is applied to define a
new surface. The new surface can be represented by a modified
embedding of the base meshϕ′ : K0 → IR3. (Rotation is just a
special case of general deformation.)

Our goal then is to compute the corresponding surface light field
L′(u,!), and our solution is operationally very simple. We compute
the new surface normal fieldn′(u) and then setL′(u,!) = eL(u, e!′),
wheree!′ is the reflection of! through the new normal.

Figures 11 and 12 demonstrate the geometric edits. Figure 11(a)
shows the original elephant; (c) and (d) show the elephant rotated

(a) (b)

(c) (d)

Figure 11 Editing operations applied to the elephant. (a) Original
elephant. (b) Sharper and brighter highlights. (c) Environment ro-
tated. (d) Environment rotated to another position.

Figure 12 A volumetric deformation applied to the fish. (Original on left.)

relative to its environment. Figure 12(a) shows the fish as it was
originally; Figure 12(b) shows it after deformation, with its head
bent to the side.

Our method for computing the new surface light fieldL′ from
the originalL is justified if the environment is infinitely far away,
if there is no occlusion, shadowing or interreflection, and if the
BRDFs for all surface points are reflective. These are the same
assumptions that motivate our reflection transformation described
in Section 4.4. Even if all of these requirements are met, there is
an additional problem. For any grid pointui ∈ K0, the camera
directions represented in the data lumisphere fall inside a hemi-
sphere. After editing, however, there will in general be viewing
directions that require values ofL′(ui ,!) for directions outside this
hemisphere. In fact, if we rotate the object by 180 degrees, we
will need values exactly on the opposite hemisphere. Operationally,
however, inferring these values is not a problem. The estimation
techniques guarantee that lumispheres are well-defined everywhere,
albeit not necessarily realistic.

7 Future work

We envision a number of areas for future work:

Combining function quantization and principal function analy-
sis. Our two compression methods can be considered extrema of
a spectrum: Function quantization fits the data by a collection of
0-dimensional spaces, whereas principal function analysis uses a

9

To appear in the SIGGRAPH 2000 conference proceedings

single higher-dimensional space. We could do both: fit a collection
of higher dimensional spaces. That approach might work well if
the data lumispheres lie on a low-dimensional curved manifold in
lumisphere space.

Wavelet representation of a surface light field.Constructing a
wavelet expansion of the surface light fieldL(u,!) might re-
sult in better compression than function quantization or principal
function analysis, and would support progressive transmission and
performance-tuned rendering [4].

Hole filling using texture synthesis.We have no method for
assigning lumispheres to surface points not visible in any of the
cameras, like those on the bottom of the elephant in Figure 7.
A texture synthesis algorithm, suitably extended to operate on
lumispheres instead of colors and with textures defined on general
surfaces instead of the plane, could be used to fill these holes.

Acknowledgements

We would like to thank Marc Levoy for the use of the Stanford
spherical gantry and other equipment. This work was supported by
an NSF grant (DMS-9803226) and an Osberg Family Fellowship,
as well as industrial gifts from Intel, Microsoft, and Pixar.

References

[1] D. I. Azuma. Interactive Rendering of Surface Light Fields. Technical
Report UW-CSE-2000-04-01, Department of Computer Science and
Engineering, University of Washington, April 2000.

[2] P. J. Besl and N. D. McKay. A Method for Registration of 3-D Shapes.
IEEE Transactions on Pattern Analysis and Machine Intelligence,
14(2):239–256, February 1992.

[3] B. Cabral, M. Olano, and P. Nemec. Reflection Space Image Based
Rendering. InSIGGRAPH 98 Conference Proceedings, Annual
Conference Series, pages 165–170, August 1999.

[4] A. Certain, J. Popovi´c, T. DeRose, T. Duchamp, D. Salesin, and
W. Stuetzle. Interactive Multiresolution Surface Viewing. In
SIGGRAPH 96 Conference Proceedings, Computer Graphics Annual
Conference Series, pages 91–98, August 1996.

[5] J. Cohen, M. Olano, and D. Manocha. Appearance-Preserving
Simplification. InSIGGRAPH 98 Conference Proceedings, Annual
Conference Series, pages 115–122. ACM SIGGRAPH, July 1998.

[6] B. Curless and M. Levoy. A Volumetric Method for Building Complex
Models from Range Images. InSIGGRAPH 96 Conference Proceed-
ings, Annual Conference Series, pages 303–312, August 1996.

[7] P. E. Debevec, C. J. Taylor, and J. Malik. Modeling and Rendering
Architecture from Photographs: A Hybrid Geometry- and Image-
Based Approach. InSIGGRAPH 96 Conference Proceedings, Annual
Conference Series, pages 11–20, August 1996.

[8] P. E. Debevec, Y. Yu, and G. D. Borshukov. Efficient View-
Dependent Image-Based Rendering with Projective Texture-Mapping.
Eurographics Rendering Workshop 1998, pages 105–116, June 1998.

[9] M. Eck, T. DeRose, T. Duchamp, H. Hoppe, M. Lounsbery, and
W. Stuetzle. Multiresolution Analysis of Arbitrary Meshes. In
SIGGRAPH 95 Conference Proceedings, Annual Conference Series,
pages 173–182, August 1995.

[10] H. Gagnon, M. Soucy, R. Bergevin, and D. Laurendeau. Registration
of Multiple Range Views for Automatic 3-D Model Building. InIEEE
Conf. Computer Vision and Pattern Recognition, pages 581–586, June
1994.

[11] A. Gersho and R. M. Gray.Vector Quantization and Signal Compres-
sion. Kluwer Academic Publishers, 1991.

[12] S. J. Gortler, R. Grzeszczuk, R. Szeliski, and M. F. Cohen. The
Lumigraph. In SIGGRAPH 96 Conference Proceedings, Annual
Conference Series, pages 43–54, August 1996.

[13] W. Heidrich and H.-P. Seidel. Realistic, Hardware-Accelerated
Shading and Lighting.Proceedings of SIGGRAPH 99, pages 171–
178, August 1999.

[14] H. Hoppe. Progressive Meshes. InSIGGRAPH 96 Conference
Proceedings, Annual Conference Series, pages 99–108, August 1996.

[15] H. Hoppe. View-Dependent Refinement of Progressive Meshes. In
SIGGRAPH 97 Conference Proceedings, Annual Conference Series,
pages 189–198, August 1997.

[16] A. W. F. Lee, W. Sweldens, P. Schroeder, L. Cowsar, and D. Dobkin.
MAPS: Multiresolution Adaptive Parameterization of Surfaces. In
SIGGRAPH 98 Conference Proceedings, Annual Conference Series,
pages 95–104, July 1998.

[17] M. Levoy and P. Hanrahan. Light Field Rendering. InSIGGRAPH
96 Conference Proceedings, Annual Conference Series, pages 31–42,
August 1996.

[18] M. Lounsbery, T. D. DeRose, and J. Warren. Multiresolution Analysis
for Surfaces of Arbitrary Topological Type.ACM Transactions on
Graphics, 16(1):34–73, January 1997.

[19] D. Luebke and C. Erikson. View-Dependent Simplification of Arbi-
trary Polygonal Environments. InSIGGRAPH 97 Conference Pro-
ceedings, Annual Conference Series, pages 199–208, August 1997.

[20] M. Magnor and B. Girod. Adaptive Block-Based Light Field Coding.
Proc. 3rd International Workshop on Synthetic and Natural Hybrid
Coding and Three-Dimensional Imaging, pages 140–143, September
1999.

[21] M. Magnor and B. Girod. Hierarchical Coding of Light Fields with
Disparity Maps. Proc. IEEE International Conference on Image
Processing, pages 334–338, October 1999.

[22] G. S. P. Miller, S. Rubin, and D. Ponceleon. Lazy Decompression
of Surface Light Fields for Precomputed Global Illumination.Euro-
graphics Rendering Workshop 1998, pages 281–292, June 1998.

[23] K. Nishino, Y. Sato, and K. Ikeuchi. Appearance compression and
synthesis based on 3D model for mixed reality. InProceedings of
IEEE ICCV’99, pages 38 – 45, September 1999.

[24] K. Nishino, Y. Sato, and K. Ikeuchi. Eigen-Texture Method: Appear-
ance Compression based on 3D Model.Proc. of Computer Vision and
Pattern Recognition, 1:618–624, June 1999.

[25] K. Perlin and E. M. Hoffert. Hypertexture.Computer Graphics
(Proceedings of SIGGRAPH 89), 23(3):253–262, July 1989.

[26] K. Pulli, M. Cohen, T. Duchamp, H. Hoppe, L. Shapiro, and W. Stuet-
zle. View-based Rendering: Visualizing Real Objects from Scanned
Range and Color Data.Eurographics Rendering Workshop 1997,
pages 23–34, June 1997.

[27] S. M. Rusinkiewicz. A New Change of Variables for Efficient BRDF
Representation. InEurographics Rendering Workshop 1998, pages
11–22. Eurographics, June 1998.

[28] Y. Sato, M. D. Wheeler, and K. Ikeuchi. Object Shape and Reflectance
Modeling from Observation. InSIGGRAPH 97 Conference Proceed-
ings, Annual Conference Series, pages 379–388, August 1997.

[29] G. Taubin. A Signal Processing Approach to Fair Surface Design. In
SIGGRAPH 95 Conference Proceedings, Annual Conference Series,
pages 351–358. ACM SIGGRAPH, August 1995.

[30] R. Y. Tsai. An Efficient and Accurate Camera Calibration Technique
for 3D Machine Vision. InProceedings of IEEE Conference on
Computer Vision and Pattern Recognition, pages 364–374, 1986.

[31] B. Walter, G. Alppay, E. P. F. Lafortune, S. Fernandez, and D. P.
Greenberg. Fitting Virtual Lights For Non-Diffuse Walkthroughs. In
SIGGRAPH 97 Conference Proceedings, Annual Conference Series,
pages 45–48, August 1997.

[32] J. C. Xia and A. Varshney. Dynamic View-Dependent Simplification
for Polygonal Models. InIEEE Visualization ’96. IEEE, October
1996.

[33] Y. Yu, P. Debevec, J. Malik, and T. Hawkins. Inverse Global
Illumination: Recovering Reflectance Models of Real Scenes From
Photographs. InSIGGRAPH 98 Conference Proceedings, Annual
Conference Series, pages 215–224, August 1999.

10

Acquisition and Visualization of
Surface Light Fields

SIGGRAPH 2001 Course 46 Notes

Session 6:

Point-sample Rendering for Visualization of Surface Light Fields

Hanspeter Pfister
Mitsubishi Electric Research Lab

Point-Sample Rendering for the

Visualization of Surface Lightfields

Hanspeter Pfister
MERL

pfister@merl.com

Point-Based Computer Graphics

• Point-based models allow us to efficiently
acquire and display complex 3D objects.

Our Goals

• Develop a systems architecture with:

• automatic acquisition,

• transmission,

• and interactive rendering.

• Render point-based volume and surface data

using the same framework.

Outline

3D Images

• Acquisition - Leonard McMillan’s talk

• Display

• Surfels as Rendering Primitives

• EWA Volume and Surface Splatting

Conclusions

Three System Implementations

V1.0 (July-Oct 2000) V2.0 (Oct-Dec 2000)

Current System

Current System

Current System

Image-Based Visual Hull

• The visual hull is augmented by radiance data to

render reflections and transparency.

Acquisition Summary
• Advantages:

• Very robust for all kinds of objects.

• Simultaneous acquisition of shape and appearance.

• Limitations:

• Requires very good camera calibration.

Outline

3D Images

• Acquisition

� Display

• Surfels as Rendering Primitives

• EWA Volume and Surface Splatting

Conclusions

Surfels

• Surfels = surface elements

A collection of points with shape and shade attributes

that locally approximate an object surface.

{
xyz;
normal;
RGBA;
material;
etc...}

Motivation

• Triangle meshes have become very complex

(> 1 million triangles).

• Typical triangles project to < 1 pixel.

• Point samples (surfels) allow us to efficiently

render complex shape and appearance.

Surfels as Rendering Primitives

[Pfister, Zwicker, van Baar, Gross, SIGGRAPH 2000]

• Interactive rendering of complex textured

geometry.

Related Work

• Texture mapping

• Image-based Rendering

• Volume Graphics (“surface voxels”)

• Point Sample Rendering
• Animatek, www.animatek.com

• Levoy and Whitted, 1985

• Grossman and Dally, 1999

• Qsplat, SIGGRAPH 2000

Overview

• 1. Acquisition

• 2. Display

Forward

Warping
Visibility

Texture Filtering

and Shading

Image

Reconstruction

Sampling and

Texture Prefiltering
Geometry

Surfel

Data StructureRadiance Data

(Images)
IBVH and

Surface Lightfield

Surfel

Data Structure
OR

Data Structure - LDC Tree

• LDC tree stands for layered depth cube tree.

• It is based on the concept of layered-depth images

(LDIs).

• Shade et al., 1996

• The LDC consists of 3 orthogonal LDIs.

• Lischinski et al., 1998

• The LDI tree extends LDIs towards a hierarchy.

• Chang et al., 1999

LDC Tree

Level 0

Level 1

Level 2

Rendering

• Optimized incremental forward warping.

[Grossman / Dally 98]

• View frustum culling with the block bounding box.

• Visibility cones to cull blocks with backfacing surfels

(computed during preprocessing).

Overview

• 1. Acquisition

• 2. Display

Forward

Warping
Visibility

Texture Filtering

and Shading

Image

Reconstruction

Sampling and

Texture Prefiltering
Geometry

Surfel

Data StructureRadiance Data

(Images)
IBVH and

Surface Lightfield

OR

Visibility Splatting and Image

Reconstruction

• After projection the image may contain holes.

Visibility Splatting and Image

Reconstruction

• To reconstruct a continuous 2D image, we

apply a two-phase approach:

 1. Determine visible surfels using a z-buffer

and visibility splatting.

2. Reconstruct the 2D image using the visible

surfels.

Visibility Splatting

Object space Z-Buffer

A tangent disk centered at each surfel is projected into the z-

buffer.

Image Buffer

Visibility Splatting

Object space Z-Buffer

The surfel color is written into the image buffer.

Pixels that are covered by the visibility splat are marked as

holes.

Image Buffer

Visibility Splatting

Object space Z-Buffer

Visibility Splatting

Object space Z-Buffer Image Buffer

Image Reconstruction

Image Buffer Output Image

The output image is reconstructed using 2D filtering.

Overview

• 1. Acquisition

• 2. Display

Forward

Warping
Visibility

Texture Filtering

and Shading

Image

Reconstruction

Sampling and

Texture Prefiltering
Geometry

Surfel

Data StructureRadiance Data

(Images)
IBVH and

Surface Lightfield

OR

Surface Light Field

• A surface light field assigns a color to each ray

originating on a surface.

• We store up to 100 colors per surface point.

[Wood et al., 2000]

Shading Algorithm

• A view-dependent strategy.

Outline

3D Images

• Acquisition

• Display

• Surfels as Rendering Primitives

� EWA Volume and Surface Splatting

Conclusions

Surface Texture Function

• Texture function on the surface of a point-based
object is a sum of 2D reconstruction kernels.

Rendering Framework
Object Space

Sample

Screen Space

Warp

Screen Space

Filter

Screen Space

Rendering Framework

• Express texture and volume functions as sums of
reconstruction kernels.

• Forward projection of reconstruction kernels.

• Bandlimit the continuous image function by low-pass
filtering the kernels.

• Called resampling kernels.

• Accumulation of resampling kernels in screen space.

Surface Splatting

Volume Splatting

• Volume is a field of 3D reconstruction kernels.

• One kernel at each voxel.

• Pre-integrate the 3D reconstruction kernels into 2D

footprints.

[Westover, 1989]

3D Kernel �
�

� �� d),y,x(r)y,x(q
kk

2D Footprint

Volume Resampling Filter

• We make several simplifying assumptions to

combine the band-limiting low-pass filter with the

footprint.

• Constant extinction and emission in each kernel.

))(hq(goc))(hI(
kkk

k

k
xx ��� � ��

Emission

Extinction

2D Resampling Filter

(Footprint � Low-Pass Filter)

Elliptical Gaussian Kernels

• We choose elliptical Gaussians as reconstruction
and low-pass filters.

• They are closed under affine mappings and

convolution.

• The integration of a 3D Gaussian is a 2D Gaussian.

EWA Resampling Filter

• The EWA resampling filter combines the

footprint with a screen space (Gaussian) low-

pass filter.

• Analytic formulation of the EWA resampling

filter in screen space.

)C)(VWVW(G
W

1
))(hq()(hqT

1
�����

�

xxx�

EWA Volume Splatting

• Volume renderings using the EWA resampling
filter.

[Zwicker, Pfister, van Baar, Gross, 2001]

EWA Surface Splatting

• Render volume iso-surfaces with flattened kernels

for better quality.

• Render volume iso-surfaces with flattened kernels

for better quality.

EWA Surface Splatting

• Texture anti-aliasing and edge anti-aliasing.

• Transparency.

[Zwicker, Pfister, van Baar, Gross, SIGGRAPH

2001]

4/25/01 Company Confidential 43

EWA Volume and Surface Splatting

• Advantages:

• Correct antialiasing without excessive blurring.

• Combined visualization of volume and surface data.

• Amenable to hardware acceleration.

• Limitations:

• Currently about 0.5 to 15 seconds per frame.

• Not efficient for flat surfaces with uniform color.

Conclusions

• EWA volume and surface splatting provides a
unifying rendering framework for volume and
surface samples.

• Point-based computer graphics and

visualization is able to capture and render
complex surface lightfields efficiently.

Future Work

• Improved 3D scanners.

• Compression and progressive transmission.

• Deformable point-sample models.

• Custom hardware for EWA splatting.

• Virtual humans and 3D teleconferencing.

• Virtual scenes and mixed reality.

Acknowledgements

• Colleagues:

• MERL: Jeroen van Baar, Paul Beardsley, Bill Yerazunis,

Darren Leigh, Ron Perry.

• MIT: Wojciech Matusik, Chris Buehler, Leonard McMillan.

• ETH Zürich: Matthias Zwicker, Markus Gross.

• Bibliography and Papers:

• http://www.merl.com/people/pfister/

Surface Splatting

Matthias Zwicker � Hanspeter Pfister y Jeroen van Baary Markus Gross�

Figure 1: Surface splatting of a scan of a human face, textured terrain, and a complex point-sampled object with semi-transparent surfaces.

Abstract
Modern laser range and optical scanners need rendering techniques
that can handle millions of points with high resolution textures.
This paper describes a point rendering and texture filtering tech-
nique called surface splatting which directly renders opaque and
transparent surfaces from point clouds without connectivity. It
is based on a novel screen space formulation of the Elliptical
Weighted Average (EWA) filter. Our rigorous mathematical anal-
ysis extends the texture resampling framework of Heckbert to ir-
regularly spaced point samples. To render the points, we develop a
surface splat primitive that implements the screen space EWA filter.
Moreover, we show how to optimally sample image and procedural
textures to irregular point data during pre-processing. We also com-
pare the optimal algorithm with a more efficient view-independent
EWA pre-filter. Surface splatting makes the benefits of EWA tex-
ture filtering available to point-based rendering. It provides high
quality anisotropic texture filtering, hidden surface removal, edge
anti-aliasing, and order-independent transparency.

Keywords: Rendering Systems, Texture Mapping, Antialiasing,
Image-Based Rendering, Frame Buffer Algorithms.

1 Introduction
Laser range and image-based scanning techniques have produced
some of the most complex and visually stunning models to date [9].
One of the challenges with these techniques is the huge volume of

�ETH Zürich, Switzerland. Email: [zwicker,grossm]@inf.ethz.ch
yMERL, Cambridge, MA. Email: [pfister,jeroen]@merl.com

point samples they generate. A commonly used approach is gener-
ating triangle meshes from the point data and using mesh reduction
techniques to render them [7, 2]. However, some scanned meshes
are too large to be rendered interactively [9], and some applications
cannot tolerate the inherent loss in geometric accuracy and texture
fidelity that comes from polygon reduction.

Recent efforts have focused on direct rendering techniques for
point samples without connectivity [16, 4, 15]. These techniques
use hierarchical data structures and forward warping to store and
render the point data efficiently. One important challenge for point
rendering techniques is to properly reconstruct continuous surfaces
from the irregularly spaced point samples while maintaining the
high texture fidelity of the scanned data. In addition, the point ren-
dering should correctly handle hidden surface removal and trans-
parency.

In this paper we propose a new point rendering technique called
surface splatting, focusing on high quality texture filtering. In con-
trast to previous point rendering approaches, surface splatting uses
a novel screen space formulation of the Elliptical Weighted Average
(EWA) filter [3], the best anisotropic texture filtering algorithm for
interactive systems. Extending the framework of Heckbert [6], we
derive a screen space form of the EWA filter for irregularly spaced
point samples without global texture parameterization. This makes
surface splatting applicable to high-resolution laser range scans, ter-
rain with high texture detail, or point-sampled geometric objects
(see Figure 1). A modified A-buffer [1] provides hidden surface
removal, edge anti-aliasing, and order-independent transparency at
a modest increase in computation efforts.

The main contribution of this paper is a rigorous mathemati-
cal formulation of screen space EWA texture filtering for irregular
point data, presented in Section 3. We show how the screen space
EWA filter can be efficiently implemented using surface splatting
in Section 4. If points are used as rendering primitives for complex
geometry, we want to apply regular image textures to point sam-
ples during conversion from geometric models. Hence, Section 5
introduces an optimal texture sampling and pre-filtering method for
irregular point samples. Sections 6 and 7 present our modified A-
buffer method for order-independent transparency and edge anti-
aliasing, respectively. Finally, we discuss implementation, timings,
and image quality issues in Section 8.

2 Previous Work
Texture mapping increases the visual complexity of objects by map-
ping functions for color, normals, or other material properties onto
the surfaces [5]. If these texture functions are inappropriately band-
limited, texture aliasing may occur during projection to raster im-
ages. For a general discussion of this problem see [21]. Although
we develop our contributions along similar lines to the seminal
work of Heckbert [6], our approach is fundamentally different from
conventional texture mapping. We present the first systematic anal-
ysis for representing and rendering texture functions on irregularly
point-sampled surfaces.

The concept of representing objects as a set of points and using
these as rendering primitives has been introduced in a pioneering re-
port by Levoy and Whitted [10]. Due to the continuing increase in
geometric complexity, their idea has recently gained more interest.
QSplat [16] is a point rendering system that was designed to interac-
tively render large datasets produced by modern scanning devices.
Other researchers demonstrated the efficiency of point-based meth-
ods for rendering geometrically complex objects [4, 15]. In some
systems, point-based representations are temporarily stored in the
rendering pipeline to accelerate rendering [11, 17]. Surprisingly,
nobody has systematically addressed the problem of representing
texture functions on point-sampled objects and avoiding aliasing
during rendering. We present a surface splatting technique that can
replace the heuristics used in previous methods and provide supe-
rior texture quality.

Volume splatting [19] is closely related to point rendering and
surface splatting. A spherical 3D reconstruction kernel centered at
each voxel is integrated along one dimension into a 2D “footprint
function.” As each voxel is projected onto the screen, the 2D foot-
prints are accumulated directly into the image buffer or into image-
aligned sheet buffers. Some papers [18, 14] address aliasing caused
by insufficient resampling rates during perspective projections. To
prevent aliasing, the 3D reconstruction kernels are scaled using a
heuristic. In contrast, surface splatting models both reconstruct-
ing and band-limiting the texture function in a unified framework.
Moreover, instead of pre-integrating isotropic 3D kernels, it uses
oriented 2D kernels, providing anisotropic filtering for surface tex-
tures.

3 The Surface Splatting Framework
The basis of our surface splatting method is a model for the rep-
resentation of continuous texture functions on the surface of point-
based graphics objects, which is introduced in Section 3.1. Since
the 3D points are usually positioned irregularly, we use a weighted
sum of radially symmetric basis functions. With this model at hand,
we look at the task of rendering point-based objects as a concatena-
tion of warping, filtering, and sampling the continuous texture func-
tion. In Section 3.2 we extend Heckbert’s resampling theory [6]
to process point-based objects and develop a mathematical frame-
work of the rendering procedure. In Section 3.3 we derive an al-
ternative formulation of the EWA texture filter that we call screen
space EWA, leading to the surface splatting algorithm discussed in
Section 4. In Section 5, we describe how to acquire the texture
functions, which can be regarded as a scattered data approximation
problem. A continuous approximation of the unknown original tex-
ture function needs to be computed from an irregular set of sam-
ples. We distinguish between scanned objects with color per point
and regular textures that are explicitly applied to point-sampled ge-
ometry.

3.1 Texture Functions on Point-Based Objects
In conventional polygonal rendering, texture coordinates are usu-
ally stored per vertex. This enables the graphics engine to combine
the mappings from 2D texture space to 3D object space and from
there to 2D screen space into a compound 2D to 2D mapping be-

tween texture and screen space. Using this mapping, pixel colors
are computed by looking up and filtering texture samples in 2D
texture space at rendering time. There is no need for a sampled
representation of the texture in 3D object space. By contrast, the
compound mapping function is not available with point-based ob-
jects at rendering time. Consequently, we must store an explicit
texture representation in object space.

We represent point-based objects as a set of irregularly spaced
points fPkg in three dimensional object space without connectiv-
ity. A point Pk has a position and a normal. It is associated with
a radially symmetric basis function rk and coefficients wr

k; w
g
k; w

b
k

that represent continuous functions for red, green, and blue color
components. Without loss of generality, we perform all further cal-
culations with scalar coefficients wk. Note that the basis functions
rk and coefficients wk are determined in a pre-processing step, de-
scribed in Section 5.

We define a continuous function on the surface represented by
the set of points as illustrated in Figure 2. Given a point Q any-

3D object space

Pk

Q

u0

u1

2D parameterization
local parameterization

basis function rk(u-uk)
small neighborhood
around Q

P3P1

P2

1

Figure 2: Defining a texture function on the surface of a point-based
object.

where on the surface, shown left, we construct a local parameteri-
zation of the surface in a small neighborhood of Q, illustrated on
the right. The points Q and Pk have local coordinates u and uk,
respectively. We define the continuous surface function fc(u) as
the weighted sum:

fc(u) =
X
k2N

wkrk(u� uk). (1)

We choose basis functions rk that have local support or that are ap-
propriately truncated. Then u lies in the support of a small number
of basis functions. Note that in order to evaluate (1), the local pa-
rameterization has to be established in the union of these support ar-
eas only, which is very small. Furthermore, we will compute these
local parameterizations on the fly during rendering as described in
Section 4.

3.2 Rendering
Heckbert introduced a general resampling framework for texture
mapping and the EWA texture filter in [6]. His method takes a reg-
ularly sampled input function in source space, reconstructs a con-
tinuous function, warps it to destination space, and computes the
properly sampled function in destination space. Properly sampled
means that the Nyquist criterion is met. We will use the term screen
space instead of destination space.

We extend this framework towards a more general class of in-
put functions as given by Equation (1) and describe our rendering
process as a resampling problem. In contrast to Heckbert’s regular
setting, in our representation the basis functions rk are irregularly
spaced. In the following derivation, we adopt Heckbert’s notation.

Given an input function as in Equation (1) and a mapping x =
m(u) : R2 ! R

2 from source to screen space, rendering involves
the three steps illustrated in Figure 3:

xu

texture function discrete output

warp sample

x x

filter

fc(u)
rk(u-uk)
wk

g'c(x)
ρk(x)

g(x)

gc(x)=fc(m-1(x))
rk(m-1(x)-uk)
wk

warped texture function band limited texture function

Figure 3: Warping, filtering, and sampling the texture function.

1. Warp fc(u) to screen space, yielding the warped, continuous
screen space signal gc(x):

gc(x) = (fc Æm
�1)(x) = fc(m

�1(x)),

where Æ denotes function concatenation.

2. Band-limit the screen space signal using a prefilter h, result-
ing in the continuous output function g0c(x):

g0c(x) = gc(x)
 h(x) =

Z
R2

gc(�)h(x� �)d�,

where
 denotes convolution.

3. Sample the continuous output function by multiplying it with
an impulse train i to produce the discrete output g(x):

g(x) = g0c(x)i(x).

An explicit expression for the warped continuous output function
can be derived by expanding the above relations in reverse order:

g0c(x) =

Z
R2

h(x� �)
X
k2N

wkrk(m
�1(�)� uk)d�

=
X
k2N

wk�k(x), (2)

where �k(x) =

Z
R2

h(x� �)rk(m
�1(�)� uk)d�. (3)

We call a warped and filtered basis function �k(x) a resampling
kernel, which is expressed here as a screen space integral. Equa-
tion (2) states that we can first warp and filter each basis function
rk individually to construct the resampling kernels �k and then sum
up the contributions of these kernels in screen space. We call this
approach surface splatting, as illustrated in Figure 4. In contrast
to Heckbert, who transformed the screen space integral of Equa-
tion (2) to a source space integral and formulated a source space
resampling kernel, we proceed with (3) to derive a screen space
resampling kernel.

In order to simplify the integral for �k(x) in (3), we replace a
general mapping m(u) by its local affine approximation muk

at a
point uk ,

muk
(u) = xk + Juk � (u� uk), (4)

where xk =m(uk) and the Jacobian Juk = @m
@u

(uk).

screen space object space

resampling kernel ρk(x)

Pk

discrete output g(x)
mapping x=m(u)

m(uk)

Figure 4: Rendering by surface splatting, resampling kernels are
accumulated in screen space.

Heckbert relied on the same approximation in his derivation [6].
Since the basis functions rk have local support, muk

is used only
in a small neighborhood around uk in (3). Moreover, the approx-
imation is most accurate in the neighborhood of uk and so it does
not cause visual artifacts. We use it to rearrange Equation (3), and
after a few steps we find:

�k(x) =

Z
R2

h(x�muk
(uk)� �)r0k(�)d�

= (r0k
 h)(x�muk
(uk)), (5)

where r0k(x) = rk(J
�1
uk
x) denotes a warped basis function. Thus,

although the texture function is defined on an irregular grid, Equa-
tion (5) states that the resampling kernel in screen space, �k(x),
can be written as a convolution of a warped basis function r0k and
the low-pass filter kernel h. This is essential for the derivation of
screen space EWA in the next section. Note that from now on we
are omitting the subscript uk for m and J.

3.3 Screen Space EWA
Like Greene and Heckbert [3], we choose elliptical Gaussians both
for the basis functions and the low-pass filter, since they are closed
under affine mappings and convolution. In the following derivation
we apply these mathematical properties to the results of the previ-
ous section. This enables us to express the resampling kernel as a
single Gaussian, facilitating efficient evaluation during rendering.

An elliptical Gaussian GV(x) with variance matrix V is defined
as:

GV(x) =
1

2�jVj
1

2

e�
1

2
x
T
V
�1
x,

where jVj is the determinant ofV.We denote the variance matrices
of the basis functions rk and the low-pass filter h with Vr

k and Vh,
respectively. The warped basis function and the low-pass filter are:

r0k(x) = r(J�1x) = GVr
k
(J�1x) =

1

jJ�1j
GJVr

k
JT (x)

h(x) = GVh (x):

The resampling kernel �k of (5) can be written as a single Gaussian
with a variance matrix that combines the warped basis function and
the low-pass filter. Typically Vh = I, yielding:

�k(x) = (r0k
 h)(x�m(uk))

=
1

jJ�1j
(GJVr

k
JT
 GI)(x�m(uk))

=
1

jJ�1j
GJVr

k
JT+I(x�m(uk)). (6)

We will show how to determine J�1 in Section 4, and how to com-
pute Vr

k in Section 5. Substituting the Gaussian resampling kernel

(6) into (2), the continuous output function is the weighted sum:

g0c(x) =
X
k2N

wk
1

jJ�1j
GJVr

k
JT+I(x�m(uk)). (7)

We call this novel formulation screen space EWA. Note that Equa-
tion (7) can easily be converted to Heckbert’s original formulation
of the EWA filter by transforming it to source space. Remember
that m denotes the local affine approximation (4), hence:

x�m(uk) =m(m�1(x)� uk) = J � (m�1(x)� uk).

Substituting this into (7) we get:

g0c(x) =
X
k2N

wkG
Vr
k
+J�1J�1

T (m
�1(x)� uk). (8)

Equation (8) states the well known source space EWA method
extended for irregular sample positions, which is mathematically
equivalent to our screen space formulation. However, (8) involves
backward mapping a point x from screen to the object surface,
which is impractical for interactive rendering. It amounts to ray
tracing the point cloud to find surface intersections. Additionally,
the locations uk are irregularly positioned such that the evaluation
of the resampling kernel in object space is laborious. On the other
hand, Equation (7) can be implemented efficiently for point-based
objects as described in the next section.

4 The Surface Splatting Algorithm
Intuitively, screen space EWA filtering (7) starts with projecting a
radially symmetric Gaussian basis function from the object surface
onto the image plane, resulting in an ellipse. The ellipse is then
convolved with a Gaussian low-pass filter yielding the resampling
filter, whose contributions are accumulated in screen space. Algo-
rithmically, surface splatting proceeds as follows:

for each point P[k] {
project P[k] to screen space;
determine the resampling kernel rho[k];
splat rho[k];

}
for each pixel x in the frame buffer {
shade x;

}

We describe these operations in detail:

Determining the resampling kernel The resampling kernel
�k(x) in Equation (6) is determined by the Jacobian J of the 2D
to 2D mapping that transforms coordinates of the local surface pa-
rameterization to viewport coordinates. This mapping consists of a
concatenation of an affine viewing transformation that maps the ob-
ject to camera space, a perspective projection to screen space, and
the viewport mapping to viewport coordinates.

Note that in the viewing transformation we do not allow non-
uniform scaling or shearing. This means we preserve the rotation
invariance of our basis functions in camera space. Hence, the Jaco-
bian of this transformation can be written as a uniform scaling ma-
trix with scaling factor smv . Similarly, since we restrict the view-
port mapping to translations and uniform scaling, we can describe
its Jacobian with a scaling factor svp.

To compute the Jacobian Jpr of the perspective projection, we
have to compute the local surface parameterization. After the view-
ing transformation, objects are given in camera coordinates that can
be projected simply by division by the z coordinate. The center of
projection is at the origin of camera space and the projection plane
is the plane z = 1. The following explanations are illustrated in
Figure 5. We construct a local parameterization of the object sur-

screen space (z=1)

x0

x1

x~0

x~1

u0

u1

nk

Pk

tangent plane at Pk, i.e.,
locally parameterized source space

x

z
y

camera coordinates

Figure 5: Calculating the Jacobian J�1pr .

face around a point Pk by approximating the surface with its tan-
gent plane given by the normal nk (transformed to camera space)
at Pk. We define the parameterization by choosing two orthogo-
nal basis vectors u0 and u1 in the tangent plane. Since our basis
functions are radially symmetric, the orientation of these vectors is
arbitrary. Note that the tangent plane approximation leads to the
same inconsistencies of the local parameterizations as in conven-
tional rendering pipelines. There, the perspective mapping from
texture space to screen space is determined per triangle. However,
when the EWA kernel of a pixel near a triangle edge is warped to
texture space, it may overlap a region of the texture that is mapped
to several triangles, leading to slightly incorrect filtering of the tex-
ture. Yet, for both rendering methods, the error introduced is too
small to cause visual artifacts.

The mapping of coordinates of the local parameterization to
screen coordinates is given by the perspective projection of the tan-
gent plane to screen space. We find the Jacobian J�1pr of the inverse
mapping at the point Pk by projecting the basis vectors of screen
space x0 and x1 along the viewing ray that connects the center of
projection with Pk onto the tangent plane. This results in the vec-
tors ~x0 and ~x1. Specifically, we choose u0 = ~x0=k~x0k and con-
struct u1 such that u0;u1, and the normal nk form a right-handed
orthonormal coordinate system. This simplifies the Jacobian, since
~x0 � u1 = 0 and ~x0 � u0 = k~x0k, which is then given by:

J
�1
pr =

�
~x0 � u0 ~x1 � u0
~x0 � u1 ~x1 � u1

�
=

�
k~x0k ~x1 � u0
0 ~x1 � u1

�
,

where � denotes the vector dot product.
Concatenating the Jacobians of viewing transformation, projec-

tion, and viewport mapping, we finally get J:

J = svp � Jpr � smv .

Splatting the resampling kernel First, each point Pk is
mapped to the position m(uk) on screen. Then the resampling ker-
nel is centered at m(uk) and is evaluated for each pixel. In other
words, the contributions of all points are splatted into an accumu-
lation buffer. The projected normals of the points are filtered in
the same way. Besides color and normal components, each frame
buffer pixel contains the sum of the accumulated contributions of
the resampling kernels and camera space z values as well (see Ta-
ble 1).

Although the Gaussian resampling kernel has infinite support in
theory, in practice it is computed only for a limited range of the ex-

ponent �(x) = 1

2
xT (I + J�1J�1

T

)x. We choose a cutoff radius
c, such that �(x) < c. Bigger values for c increase image quality
but also the cost of splatting the kernel. A typical choice is c = 1,
providing good image quality at moderate splatting cost [6, 13].

Data Storage
RGBA color components 4� 4 Bytes
XYZ normal components 3� 4 Bytes

Accumulated contributions 4 Bytes
Camera space z value 4 Bytes

Material index 2 Bytes
Total per pixel: 38 Bytes

Table 1: Data storage per frame buffer pixel.

Because the resampling kernels are truncated to a finite support, an
additional normalization by the sum of the accumulated contribu-
tions is required, yielding the final pixel value:

g(x) =
X
k2N

wk
�k(x)P
j2N�j(x)

. (9)

Since the pixel grid in screen space is regular, the kernel can be eval-
uated efficiently by forward differencing in a rectangular bounding
box and using lookup tables.

In general, the depth complexity of a scene is greater than one,
thus a mechanism is required that separates the contributions of dif-
ferent surfaces when they are splatted into the frame buffer. Conse-
quently, the z value of the tangent plane at Pk is computed at each
pixel that is covered by the kernel, which can be done by forward
differencing as well. This is similar to the visibility splatting ap-
proach of [15]. To determine whether a new contribution belongs
to the same surface as is already stored in a pixel, the difference be-
tween the new z value and the z value stored in the frame buffer is
compared to a threshold. If the difference is smaller than the thresh-
old, the contribution is added to the pixel. Otherwise, given that it
is closer to the eye-point, the data of the frame buffer is replaced by
the new contribution.

Deferred shading The frame buffer is shaded after all points
of a scene have been splatted. This avoids shading invisible points.
Instead, each pixel is shaded using the filtered normal. Parameters
for the shader are accessed via an index to a table with material
properties (see Table 1). Advanced pixel shading methods, such as
reflection mapping, can be easily implemented as well.

5 Texture Acquisition
In this section we address the problem of pre-computing the texture
coefficients wk and the basis functions rk of the continuous texture
function in (1).

Determining the basis functions As in Section 3.2, the basis
functions rk are Gaussians with variance matrices Vr

k. For each
point Pk , this matrix has to be chosen appropriately in order to
match the local density of points around Pk. In some applications,
we can assume that the sampling pattern in the local planar area
around uk is a jittered grid with sidelength h in object space. Then
a simple solution to choose Vr

k is:

V
r
k =

�
1

h2
0

0 1

h2

�
,

which scales the Gaussian by h. For example in the Surfel sys-
tem [15], h is globally given by the object acquisition process that
samples the positions uk. Another possibility is to choose h as the
maximum distance between points in a small neighborhood. This
value can be pre-computed and stored in a hierarchical data struc-
ture as in [16].

Computing the coefficients We distinguish between two dif-
ferent settings when computing the coefficients wk:

1. Objects with per point color. The object acquisition method
provides points with per point color samples.

2. Texture mapping point-based objects. Image or procedural
textures from external sources are applied to a given point-
sampled geometry.

Objects with per point color Many of today’s imaging sys-
tems, such as laser range scanners or passive vision systems [12],
acquire range and color information. In such cases, the acquisition
process provides a color sample ck with each point. We have to
compute a continuous approximation fc(u) of the unknown origi-
nal texture function from the irregular set of samples ck .

A computationally reasonable approximation is to normalize the
basis functions rk to form a partition of unity, i.e., to sum up to
one everywhere. Then we use the samples as coefficients, hence
wk = ck , and build a weighted sum of the samples ck:

fc(u) =
X
k2N

ck r̂k(u� uk) =
X
k2N

ck
rk(u� uk)P
j2Nrj(u� uj)

,

where r̂k are the normalized basis functions. However, these are ra-
tional functions, invalidating the derivation of the resampling kernel
in Section 3.2. Instead, we normalize the resampling kernels, which
are warped and band-limited basis functions. This normalization
does not require additional computations, since it is performed dur-
ing rendering, as described in Equation (9).

Texture mapping of point-based objects When an im-
age or procedural texture is explicitly applied to point-sampled ge-
ometry, a mapping function from texture space to object space has
to be available at pre-processing time. This allows us to warp the
continuous texture function from texture space with coordinates s
to object space with coordinates u. We determine the unknown co-
efficients wk of fc(u) such that fc(u) optimally approximates the
texture.

From the samples ci and the sampling locations si of the tex-
ture, the continuous texture function cc(s) is reconstructed using
the reconstruction kernel n(s), yielding:

cc(s) =
X
i

cin(s� si) =
X
i

cini(s).

In our system, the reconstruction kernel is a Gaussian with unit vari-
ance, which is a common choice for regular textures. Applying the
mapping u = t(s) from texture space to object space, the warped
texture function ~fc(u) is given by:

~fc(u) = cc(t
�1(u)) =

X
i

cini(t
�1(u)).

With ~fc(u) in place, our goal is to determine the coefficients wk

such that the error of the approximation provided by fc(u) is min-
imal. Utilizing the L2 norm, the problem is minimizing the follow-
ing functional:

F (w) = k ~fc(u)� fc(u)k
2
L2

= k
P

i cini(t
�1(u))�

P
k wkrk(u� uk)k

2
L2

, (10)

wherew = (wj) denotes the vector of unknown coefficients. Since
F (w) is a quadratic function of the coefficients, it takes its mini-
mum atrF (w) = 0, yielding a set of linear equations. After some
algebraic manipulations, detailed in Appendix A, we find the linear

system Rw = c. The elements of the matrix R and the vector c
are given by the inner products:

(R)kj =< rk; rj > and

(c)k =
X
i

cihrk; ni Æ t
�1i. (11)

We compare this optimization method with a view-independent
EWA approach, similar as proposed in [4, 15]. Our novel tech-
nique is a generalization of view-independent EWA, which can be
derived from (11) by means of the simplifying assumption that the
basis functions rk are orthonormal. In this case, the inner prod-
ucts are given by hrk; rji = Ækj , where Ækj = 1 if k = j and
Ækj = 0 otherwise. Consequently, R is the identity matrix and the
coefficients are determined as in EWA filtering by:

wk =
X
i

cihrk; ni Æ t
�1i.

In Figure 6, we show a checkerboard texture that was sampled to
an irregular set of points. On the left, we applied our optimized tex-
ture sampling technique. On the right, we used view-independent
EWA. In the first row, the textures are rendered under minification,
which does not reveal the difference between the continuous tex-
ture functions, since the filter used for rendering is dominated by
the band-limiting step. In the second row, however, magnifica-
tion clearly illustrates that optimized texture sampling produces a
much sharper approximation of the original texture. In the third
row, we use extreme magnification to visualize the irregular pattern
of points, depicted in the middle.

Optimized sampling View-indep. EWA sampling

minification

magnification

Figure 6: Left: optimized texture sampling. Right: view-
independent EWA. Bottom middle: Irregular grid of points in the
area shown on the left and right.

6 Transparency
The basic algorithm described in Section 4 can be easily extended to
handle transparent surfaces as well. Our approach provides order-
independent transparency using a single rendering pass and a fixed
amount of frame buffer memory.

The general idea is to use a frame buffer that consists of several
layers, each containing the data listed in Table 1. A layer stores a
fragment at each pixel. The purpose of a fragment is to collect the
contributions of a single surface to the pixel. After all points have
been splatted, the fragments are blended back-to-front to produce
the final pixel color.

We adopt the strategy presented in [8], which avoids the disad-
vantages of both multi-pass (e.g., [20]) and basic A-buffer (e.g., [1])
algorithms. Providing a small fixed number l of fragments per
pixel, fragments are merged whenever the number of fragments ex-
ceeds the preset limit l. We apply the same rendering procedure as
described in Section 4, where the splatting is extended as follows:

Splatting the resampling kernel In contrast to the single lay-
ered frame buffer of Section 4, the frame buffer now contains sev-
eral layers, each storing a fragment per pixel. Each contribution
that is splatted into a pixel is processed in three steps:

1. Accumulate-or-Separate Decision. Using a z threshold as de-
scribed in Section 4, all fragments of the pixel are checked to
see if they contain data of the same surface as the new con-
tribution. If this is the case, the contribution is added to the
fragment and we are done. Otherwise, the new contribution
is treated as a separate surface and a temporary fragment is
initialized with its data.

2. New Fragment Insertion. If the number of fragments includ-
ing the temporary fragment is smaller than the limit l, the tem-
porary fragment is copied into a free slot in the frame buffer
and we are done.

3. Fragment Merging. If the above is not true, then two frag-
ments have to be merged. Before merging, the fragments have
to be shaded.

When fragments are merged, some information is inevitably lost
and visual artifacts may occur. These effects are minimized by us-
ing an appropriate merging strategy. Unfortunately, the situation is
complicated by the fact that a decision has to be taken as the scene
is being rendered, without knowledge about subsequent rendering
operations. The main criterion for merging fragments is the dif-
ference between their z values. This reduces the chance that there
are other surfaces, which are going to be rendered later, that lie be-
tween the two merged surfaces. In this case, incorrect back-to-front
blending may introduce visual artifacts.

Before fragments can be merged, their final color has to be deter-
mined by shading them. Shaded fragments are indicated by setting
their accumulated weight (see Table 1) to a negative value to guar-
antee that they are shaded exactly once. The color and alpha values
of the front and back fragment to be merged are cf ; �f and cb; �b,
respectively. The color and alpha values co; �o of the merged frag-
ment are computed using:

co = cf�f + cb�b (1� �f)

�o = �f + �b (1 � �f) . (12)

Similar to Section 4, fragments are shaded if necessary in a second
pass. After shading, the fragments of each pixel are blended back-
to-front as described in Equation (12) to produce the final pixel
color.

Figure 7 shows a geometric object consisting of semi-
transparent, intersecting surfaces, rendered with the extended sur-
face splatting algorithm. In most areas, the surfaces are blended
flawlessly back-to-front. The geometry of the surfaces, however,
is not reconstructed properly around the intersection lines, as illus-
trated in the close-up on the right. In these regions, contributions of
different surfaces are mixed in the fragments, which can cause vi-
sual artifacts. On the other hand, in areas of high surface curvature
the local tangent plane approximation poorly matches the actual
surface. Hence, it may happen that not all contributions of a surface
are collected in a single fragment, leading to similar artifacts. Es-
sentially, both cases arise because of geometry undersampling. We
can avoid the problem by increasing the geometry sampling rate or
by using a higher order approximation of the surface. However, the
latter is impracticable to compute for interactive rendering.

7 Edge Antialiasing
In order to perform edge antialiasing, information about partial cov-
erage of surfaces in fragments is needed. For point-based represen-
tations, one way to approximate coverage is to estimate the density

Figure 7: Geometric object with intersecting, semi-transparent sur-
faces, rendered with the extended surface splatting algorithm and
edge-antialiasing.

of projected points per pixel area [10]. Coverage is then computed
by measuring the actual density of points in a fragment and dividing
the measured value by the estimated value.

Rather than explicitly calculating this estimation, we make the
simplifying assumption that the Gaussian basis functions are lo-
cated on a regular grid and have unit variance. In this case, they
approximate a partition of unity. In other words, we assume that
they sum up to one at any point. Warping and band-limiting this
constant function results in a constant function again. Therefore
the sum q of the resampling kernels is approximately one at any
point, specifically in all fragments x:

q =
X
k2N

�k(x) � 1.

If q is smaller than one in a fragment, this indicates that the texture
does not completely cover the pixel and q can be used as a coverage
coefficient.

For an irregular grid, the approximation of the partition of unity
becomes less reliable. Furthermore, the Gaussians are truncated
to a finite support. With a cutoff radius c = 1 (see Section 4), we
found that a threshold � = 0:4 for indicating full coverage produces
good results in general. The coverage q0 of a pixel is q0 = q=� . We
implement edge antialiasing by multiplying the alpha value of a
fragment with its coverage coefficient. The final alpha value �0 of
the fragment is:

�0 =

�
� if q0 � 1
� � q0 if q0 < 1.

8 Results
We implemented a point-sample rendering pipeline based on sur-
face splatting in software. Furthermore, we can convert geometric
models into point-based objects in a pre-processing step. Our sam-
pler generates a hierarchical data structure similar to [15], facili-
tating multiresolution and progressive rendering. It applies view-
independent EWA texture filtering to sample image textures onto
point objects. We implemented the optimized texture sampling
technique discussed in Section 5 in Matlab.

Figure 1, left, shows a face that was rendered using a point cloud
acquired by a laser range scanner. Figure 1, middle and right, show
point-sampled geometric objects. We illustrate high quality textur-
ing on terrain data and semi-transparent surfaces on the complex
model of a helicopter.

Table 2 shows the performance of our unoptimized C implemen-
tation of surface splatting. The frame rates were measured on a 1.1
GHz AMD Athlon system with 1.5 GByte memory. We rendered to
a frame buffer with three layers and a resolution of 256 � 256 and

512 � 512 pixels, respectively. A pixel needs 3� 38 = 114 bytes
of storage. The entire frame buffer requires 6.375 MB and 25.5 MB
of memory, respectively.

Data # Points 256 � 256 512 � 512
Scanned Head 429075 1.3 fps 0.7 fps
Matterhorn 4782011 0.2 fps 0.1 fps
Helicopter 987552 0.6 fps 0.3 fps

Table 2: Rendering performance for frame buffer resolutions 256
� 256 and 512 � 512.

The texture quality of the surface splatting algorithm is equiva-
lent to conventional source space EWA texture quality. Figure 8,
top and second row, compare screen space EWA and source space
EWA on a high frequency texture with regular sampling pattern.
Note that screen space EWA is rendered with edge antialiasing and
there was no hierarchical data structure used. Moreover, the third
row illustrates splatting with circular Gaussians, similar to the tech-
niques of Levoy [10] and Shade [17]. We use the major axis of the
screen space EWA ellipse as the radius for the circular splats, which
corresponds to the choices of [10] and [17]. This leads to overly
blurred images in areas where the texture is magnified. In case of

Figure 8: Top row: screen space EWA. Second row: source space
EWA. Third row: circular splats. Bottom: elliptical splats.

minification, the circular splats approximate the screen space EWA
ellipses more closely, leading to better filtering. The bottom row
shows splatting with elliptical Gaussians that are determined us-
ing the normal direction of the surface as discussed in [16]. This

amounts to omitting the band-limiting step of EWA, which causes
aliasing artifacts in regions where the texture is minified. In magni-
fied areas, the elliptical splats result in nice anisotropic filtering. In
contrast to these methods, screen space EWA provides a continuous
transition between minification and magnification and renders high
quality textures in both cases.

9 Conclusions
Surface splatting is a new algorithm that makes the benefits of EWA
texture filtering accessible to point-based surface representations
and rendering techniques. We have provided a through mathemat-
ical analysis of the process of constructing a continuous textured
image from irregular points. We have also developed an optimized
texture sampling technique to sample image or procedural textures
onto point-based objects. Surface splatting provides stable textures
with no flickering during animations. A modified A-buffer and sim-
ple merging strategy provides transparency and edge-antialiasing
with a minimum of visual artifacts.

We will apply surface splatting to procedurally generated ob-
jects, such as parametric surfaces or fractal terrain. Rendering the
generated points in the order of computation should yield high per-
formance. We think it is possible to extend surface splatting to ren-
der volumetric objects, such as clouds, fire, and medical CT scans.
This will require extending the screen space EWA framework to
3D spherical kernels. By rendering voxels in approximate front-to-
back order we could use our modified A-buffer without undue in-
crease of the number of fragments to be merged per pixel. Because
of the simplicity of the surface splatting algorithm we are investi-
gating an efficient hardware implementation. Increasing processor
performance and real-time hardware will expand the utility of this
high quality point-rendering method.

References
[1] L. Carpenter. The A-buffer, an Antialiased Hidden Surface Method. In Computer

Graphics, volume 18 of SIGGRAPH ’84 Proceedings, pages 103–108. July 1984.

[2] B. Curless and M. Levoy. A Volumetric Method for Building Complex Models
from Range Images. In Computer Graphics, SIGGRAPH ’96 Proceedings, pages
303–312. New Orleans, LA, August 1996.

[3] N. Greene and P. Heckbert. Creating Raster Omnimax Images from Multiple
Perspective Views Using the Elliptical Weighted Average Filter. IEEE Computer
Graphics & Applications, 6(6):21–27, June 1986.

[4] J. P. Grossman and W. Dally. Point Sample Rendering. In Rendering Techniques
’98, pages 181–192. Springer, Wien, Vienna, Austria, July 1998.

[5] P. Heckbert. Survey of Texture Mapping. IEEE Computer Graphics & Applica-
tions, 6(11):56–67, November 1986.

[6] P. Heckbert. Fundamentals of Texture Mapping and Image Warping. Master’s
thesis, University of California at Berkeley, Department of Electrical Engineer-
ing and Computer Science, June 17 1989.

[7] H. Hoppe, T. DeRose, T. Duchampt, J. McDonald, and W. Stuetzle. Surface
Reconstruction from Unorganized Points. In Computer Graphics, SIGGRAPH
’92 Proceedings, pages 71–78. Chicago, IL, July 1992.

[8] N. Jouppi and C. Chang. Z3: An Economical Hardware Technique for High-
Quality Antialiasing and Transparency. In Proceedings of the Eurograph-
ics/SIGGRAPH Workshop on Graphics Hardware 1999, pages 85–93. Los An-
geles, CA, August 1999.

[9] M. Levoy, K. Pulli, B. Curless, S. Rusinkiewicz, D. Koller, L. Pereira, M. Ginz-
ton, S. Anderson, J. Davis, J. Ginsberg, J. Shade, and D. Fulk. The Digital
Michelangelo Project: 3D Scanning of Large Statues. In Computer Graphics,
SIGGRAPH 2000 Proceedings, pages 131–144. Los Angeles, CA, July 2000.

[10] M. Levoy and T. Whitted. The Use of Points as Display Primitives. Technical
Report TR 85-022, The University of North Carolina at Chapel Hill, Department
of Computer Science, 1985.

[11] T. W. Mark, L. McMillan, and G. Bishop. Post-Rendering 3D Warping. In 1997
Symposium on Interactive 3D Graphics, pages 7–16. ACM SIGGRAPH, April
1997.

[12] W. Matusik, C. Buehler, R. Raskar, S. Gortler, and L. McMillan. Image-Based
Visual Hulls. In Computer Graphics, SIGGRAPH 2000 Proceedings, pages 369–
374. Los Angeles, CA, July 2000.

[13] J. McCormack, R. Perry, K. Farkas, and N. Jouppi. Feline: Fast Elliptical Lines
for Anisotropic Texture Mapping. In Computer Graphics, SIGGRAPH ’99 Pro-
ceedings, pages 243–250. Los Angeles, CA, August 1999.

[14] K. Mueller, T. Moeller, J.E. Swan, R. Crawfis, N. Shareef, and R. Yagel. Splat-
ting Errors and Antialiasing. IEEE Transactions on Visualization and Computer
Graphics, 4(2):178–191, April-June 1998.

[15] H. Pfister, M. Zwicker, J. van Baar, and M Gross. Surfels: Surface Elements as
Rendering Primitives. In Computer Graphics, SIGGRAPH 2000 Proceedings,
pages 335–342. Los Angeles, CA, July 2000.

[16] S. Rusinkiewicz and M. Levoy. QSplat: A Multiresolution Point Rendering Sys-
tem for Large Meshes. In Computer Graphics, SIGGRAPH 2000 Proceedings,
pages 343–352. Los Angeles, CA, July 2000.

[17] J. Shade, S. J. Gortler, L. He, and R. Szeliski. Layered Depth Images. In Com-
puter Graphics, SIGGRAPH ’98 Proceedings, pages 231–242. Orlando, FL, July
1998.

[18] J. E. Swan, K. Mueller, T. Möller, N. Shareef, R. Crawfis, and R. Yagel. An Anti-
Aliasing Technique for Splatting. In Proceedings of the 1997 IEEE Visualization
Conference, pages 197–204. Phoenix, AZ, October 1997.

[19] L. Westover. Footprint Evaluation for Volume Rendering. In Computer Graph-
ics, Proceedings of SIGGRAPH 90, pages 367–376. August 1990.

[20] S. Winner, M. Kelley, B. Pease, B. Rivard, and A. Yen. Hardware Accelerated
Rendering of Antialiasing Using a Modified A-Buffer Algorithm. pages 307–
316, August 1997.

[21] G. Wolberg. Digital Image Warping. IEEE Computer Society Press, Los Alami-
tos, California, 1990.

Appendix A: Mathematical Framework
The L2 Norm of equation (10) can be computed using inner products hf; fi:

kfk2L2 = hf; fi =

Z
f(x)f(x)dx,

and exploiting the linearity of the operator we obtain:

F (w) = k
X
i

cini(t
�1

(u))�
X
j

wjrj(u� uj)k
2

L2

= h
X
i

cini(t
�1

(u));
X
i

cini(t
�1

(u))i

+ h
X
j

wjrj(u� uj);
X
j

wjrj(u� uj)i

� 2h
X
i

cini(t
�1(u));

X
j

wjrj(u� uj)i.

We minimize F (w) by computing the roots of the gradient, i.e.:

rF (w) =

0
BBBB@

.

.

.
@F
@wk

.

.

.

1
CCCCA = 0.

The partial derivatives @F
@wk

are given by:

@F (w)

@wk
=

@

@wk

X
i

X
j

wiwjhri(u� ui); rj(u� uj)i

� 2
@

@wk
h
X
j

wjrj(u� uj);
X
i

cini(t
�1

(u))i

= 2
X
j

wjhrj(u� uj); rk(u� uk)i

� 2
X
i

cihrk(u� uk); ni(t
�1(u))i = 0.

This set of linear equations can be written in matrix form:0
BBBB@

. . .

hrk; rji

. . .

1
CCCCA

| {z }
R

0
BBBB@

.

.

.
wj

.

.

.

1
CCCCA

| {z }
w

=

0
BBBB@

.

.

.P
i cihrk; ni � t

�1i

.

.

.

1
CCCCA

| {z }
c

.

Surfels: Surface Elements as Rendering Primitives

Hanspeter Pfister � Matthias Zwicker y Jeroen van Baar� Markus Grossy

Figure 1: Surfel rendering examples.

Abstract
Surface elements (surfels) are a powerful paradigm to efficiently
render complex geometric objects at interactive frame rates. Un-
like classical surface discretizations, i.e., triangles or quadrilateral
meshes, surfels are point primitives without explicit connectivity.
Surfel attributes comprise depth, texture color, normal, and oth-
ers. As a pre-process, an octree-based surfel representation of a
geometric object is computed. During sampling, surfel positions
and normals are optionally perturbed, and different levels of texture
colors are prefiltered and stored per surfel. During rendering, a hi-
erarchical forward warping algorithm projects surfels to a z-buffer.
A novel method called visibility splatting determines visible sur-
fels and holes in the z-buffer. Visible surfels are shaded using tex-
ture filtering, Phong illumination, and environment mapping using
per-surfel normals. Several methods of image reconstruction, in-
cluding supersampling, offer flexible speed-quality tradeoffs. Due
to the simplicity of the operations, the surfel rendering pipeline is
amenable for hardware implementation. Surfel objects offer com-
plex shape, low rendering cost and high image quality, which makes
them specifically suited for low-cost, real-time graphics, such as
games.

CR Categories: I.3.3 [Computer Graphics]: Picture/Image
Generation – Viewing Algorithms; I.3.6 [Computer Graphics]:
Methodology and Techniques – Graphics Data Structures and Data
Types.

Keywords: Rendering Systems, Texture Mapping.

�MERL, Cambridge, MA. Email: [pfister,jeroen]@merl.com
yETH Zürich, Switzerland. Email: [zwicker,gross]@inf.ethz.ch

1 Introduction
3D computer graphics has finally become ubiquitous at the con-
sumer level. There is a proliferation of affordable 3D graphics hard-
ware accelerators, from high-end PC workstations to low-priced
gamestations. Undoubtedly, key to this success is interactive com-
puter games that have emerged as the “killer application” for 3D
graphics. However, interactive computer graphics has still not
reached the level of realism that allows a true immersion into a
virtual world. For example, typical foreground characters in real-
time games are extremely minimalistic polygon models that often
exhibit faceting artifacts, such as angular silhouettes.

Various sophisticated modeling techniques, such as implicit sur-
faces, NURBS, or subdivision surfaces, allow the creation of 3D
graphics models with increasingly complex shapes. Higher order
modeling primitives, however, are eventually decomposed into tri-
angles before being rendered by the graphics subsystem. The trian-
gle as a rendering primitive seems to meet the right balance between
descriptive power and computational burden [7]. To render realis-
tic, organic-looking models requires highly complex shapes with
ever more triangles, or, as Alvy Ray Smith puts it: “Reality is 80
million polygons” [26]. Processing many small triangles leads to
bandwidth bottlenecks and excessive floating point and rasteriza-
tion requirements [7].

To increase the apparent visual complexity of objects, texture
mapping was introduced by Catmull [3] and successfully applied by
others [13]. Textures convey more detail inside a polygon, thereby
allowing larger and fewer triangles to be used. Today’s graphics
engines are highly tailored for high texture mapping performance.
However, texture maps have to follow the underlying geometry of
the polygon model and work best on flat or slightly curved surfaces.
Realistic surfaces frequently require a large number of textures that
have to be applied in multiple passes during rasterization. And phe-
nomena such as smoke, fire, or water are difficult to render using
textured triangles.

In this paper we propose a new method of rendering objects with
rich shapes and textures at interactive frame rates. Our rendering
architecture is based on simple surface elements (surfels) as ren-
dering primitives. Surfels are point samples of a graphics model. In
a preprocessing step, we sample the surfaces of complex geometric
models along three orthographic views. At the same time, we per-
form computation-intensive calculations such as texture, bump, or
displacement mapping. By moving rasterization and texturing from

Sampling and
Texture Prefiltering

3-to-1 Reduction
(optional)

Block
Culling

Forward
Warping

Visibility
Splatting

Deferred
Shading

Texture
Filtering

Image Reconstruction
and Antialiasing

Surfel
LDC Tree

Reduced
LDC Tree

Geometry
a)

b)

Figure 2: Algorithm overview: a) Preprocessing. b) Rendering of the hierarchical LDC tree.

the core rendering pipeline to the preprocessing step, we dramati-
cally reduce the rendering cost.

From a modeling point of view, the surfel representation pro-
vides a mere discretization of the geometry and hence reduces the
object representation to the essentials needed for rendering. By
contrast, triangle primitives implicitly store connectivity informa-
tion, such as vertex valence or adjacency – data not necessarily
available or needed for rendering. In a sense, a surfel relates to
what Levoy and Whitted call the lingua franca of rendering in their
pioneering report from 1985 [18].

Storing normals, prefiltered textures, and other per surfel data
enables us to build high quality rendering algorithms. Shading
and transformations applied per surfel result in Phong illumination,
bump, and displacement mapping, as well as other advanced ren-
dering features. Our data structure provides a multiresolution ob-
ject representation, and a hierarchical forward warping algorithm
allows us to estimate the surfel density in the output image for
speed-quality tradeoffs.

The surfel rendering pipeline complements the existing graphics
pipeline and does not intend to replace it. It is positioned between
conventional geometry-based approaches and image-based render-
ing and trades memory overhead for rendering performance and
quality. The focus of this work has been interactive 3D applications,
not high-end applications such as feature films or CAD/CAM. Sur-
fels are not well suited to represent flat surfaces, such as walls or
scene backgrounds, where large, textured polygons provide better
image quality at lower rendering cost. However, surfels work well
for models with rich, organic shapes or high surface details and for
applications where preprocessing is not an issue. These qualities
make them ideal for interactive games.

2 Related Work
The use of points as rendering primitives has a long history in com-
puter graphics. As far back as 1974, Catmull [3] observed that ge-
ometric subdivision may ultimately lead to points. Particles were
subsequently used for objects that could not be rendered with ge-
ometry, such as clouds, explosions, and fire [23]. More recently,
image-based rendering has become popular because its rendering
time is proportional to the number of pixels in the source and out-
put images and not the scene complexity.

Visually complex objects have been represented by dynamically
generated image sprites [25], which are quick to draw and largely
retain the visual characteristics of the object. A similar approach
was used in the Talisman rendering system [27] to maintain high
and approximately constant frame rates. However, mapping objects
onto planar polygons leads to visibility errors and does not allow for
parallax and disocclusion effects. To address these problems, sev-
eral methods add per-pixel depth information to images, variously
called layered impostors [24], sprites with depth, or layered depth
images [25], just to name a few. Still, none of these techniques pro-
vide a complete object model that can be illuminated and rendered
from arbitrary points of view.

Some image-based approaches represent objects without explic-
itly storing any geometry or depth. Methods such as view inter-
polation and Quicktime VR [5] or plenoptic modeling [21] cre-
ate new views from a collection of 2D images. Lightfield [17] or
lumigraph [9] techniques describe the radiance of a scene or ob-
ject as a function of position and direction in a four- or higher-

dimensional space, but at the price of considerable storage over-
head. All these methods use view-dependent samples to represent
an object or scene. However, view-dependent samples are ineffec-
tive for dynamic scenes with motion of objects, changes in material
properties, and changes in position and intensities of light sources.

The main idea of representing objects with surfels is to describe
them in a view-independent, object-centered rather than image-
centered fashion. As such, surfel rendering is positioned between
geometry rendering and image-based rendering. In volume graph-
ics [16], synthetic objects are implicitly represented with surface
voxels, typically stored on a regular grid. However, the extra third
dimension of volumes comes at the price of higher storage require-
ments and longer rendering times. In [8], Perlin studies “surflets,”
a flavor of wavelets that can be used to describe free-form implicit
surfaces. Surflets have less storage overhead than volumes, but ren-
dering them requires lengthy ray casting.

Our research was inspired by the following work: Animatek’s
Caviar player [1] provides interactive frame rates for surface voxel
models on a Pentium class PC, but uses simplistic projection and
illumination methods. Levoy and Whitted [18] use points to model
objects for the special case of continuous, differentiable surfaces.
They address the problem of texture filtering in detail. Max uses
point samples obtained from orthographic views to model and ren-
der trees [20]. Dally et al. [6] introduced the delta tree as an object-
centered approach to image-based rendering. The movement of the
viewpoint in their method, however, is still confined to particular
locations. More recently, Grossman and Dally [12] describe a point
sample representation for fast rendering of complex objects. Chang
et al. [4] presented the LDI tree, a hierarchical space-partitioning
data structure for image-based rendering.

We extend and integrate these ideas and present a complete point
sample rendering system comprising an efficient hierarchical repre-
sentation, high quality texture filtering, accurate visibility calcula-
tions, and image reconstruction with flexible speed-quality trade-
offs. Our surfel rendering pipeline provides high quality rendering
of exceedingly complex models and is amenable for hardware im-
plementation.

3 Conceptual Overview
Similar to the method proposed by Levoy and Whitted [18], our
surfel approach consists of two main steps: sampling and surfel
rendering. Sampling of geometry and texture is done during prepro-
cessing, which may include other view-independent methods such
as bump and displacement mapping. Figure 2 gives a conceptual
overview of the algorithm.

The sampling process (Section 5) converts geometric objects and
their textures to surfels. We use ray casting to create three orthog-
onal layered depth images (LDIs) [25]. The LDIs store multiple
surfels along each ray, one for each ray-surface intersection point.
Lischinski and Rappaport [19] call this arrangement of three or-
thogonal LDIs a layered depth cube (LDC). An important and novel
aspect of our sampling method is the distinction between sampling
of shape, or geometry, and shade, or texture color. A surfel stores
both shape, such as surface position and orientation, and shade,
such as multiple levels of prefiltered texture colors. Because of the
similarities to traditional texture mipmaps we call this hierarchical
color information a surfel mipmap.

From the LDC we create an efficient hierarchical data structure
for rendering. Chang et al.[4] introduce the LDI tree, an octree with
an LDI attached to each octree node. We use the same hierarchical
space-partitioning structure, but store an LDC at each node of the
octree (Section 6). Each LDC node in the octree is called a block.
We call the resulting data structure the LDC tree. In a step called
3-to-1 reduction we optionally reduce the LDCs to single LDIs on
a block-by-block basis for faster rendering.

The rendering pipeline (Section 7) hierarchically projects blocks
to screen space using perspective projection. The rendering is ac-
celerated by block culling [12] and fast incremental forward warp-
ing. We estimate the projected surfel density in the output image to
control rendering speed and quality of the image reconstruction. A
conventional z-buffer together with a novel method called visibil-
ity splatting solves the visibility problem. Texture colors of visible
surfels are filtered using linear interpolation between appropriate
levels of the surfel mipmap. Each visible surfel is shaded using,
for example, Phong illumination and reflection mapping. The final
stage performs image reconstruction from visible surfels, including
hole filling and antialiasing. In general, the resolution of the output
image and the resolution of the z-buffer do not have to be the same.

4 Definition of a Surfel
We found the term surfel as an abbreviation for surface element
or surface voxel in the volume rendering and discrete topology
literature. Herman [15] defines a surfel as an oriented (n � 1)-
dimensional object in R

n. For n = 3, this corresponds to an ori-
ented unit square (voxel face) and is consistent with thinking of
voxels as little cubes. However, for our discussion we find it more
useful to define surfels as follows:

A surfel is a zero-dimensional n-tuple with shape and shade at-
tributes that locally approximate an object surface.

We consider the alternative term, point sample, to be too general,
since voxels and pixels are point samples as well.

5 Sampling
The goal during sampling is to find an optimal surfel representa-
tion of the geometry with minimum redundancy. Most sampling
methods perform object discretization as a function of geometric
parameters of the surface, such as curvature or silhouettes. This
object space discretization typically leads to too many or too few
primitives for rendering. In a surfel representation, object sampling
is aligned to image space and matches the expected output resolu-
tion of the image.

5.1 LDC Sampling
We sample geometric models from three sides of a cube into three
orthogonal LDIs, called a layered depth cube (LDC) [19] or block.
Figure 3 shows an LDC and two LDIs using a 2D drawing. Ray

LDI 1 surfels
LDI 2 surfels

LDI 1

LD
I 2

Figure 3: Layered depth cube sampling (shown in 2D).

casting records all intersections, including intersections with back-
facing surfaces. At each intersection point, a surfel is created with
floating point depth and other shape and shade properties. Perturba-
tion of the surface normal or of the geometry for bump and displace-
ment mapping can be performed on the geometry before sampling
or during ray casting using procedural shaders.

Alternatively, we could sample an object from predetermined di-
rections on a surrounding convex hull using orthographic depth im-
ages [6, 12]. However, combining multiple reference images and
eliminating the redundant information is a difficult problem [21],
and sampling geometry with reference images works best for
smooth and convex objects. In addition, LDC sampling allows us to
easily build a hierarchical data structure, which would be difficult
to do from dozens of depth images.

5.2 Adequate Sampling Resolution
Given a pixel spacing of h0 for the full resolution LDC used for
sampling, we can determine the resulting sampling density on the
surface. Suppose we construct a Delaunay triangulation on the ob-
ject surface using the generated surfels as triangle vertices. As was
observed in [19], the imaginary triangle mesh generated by this
sampling process has a maximum sidelength smax of

p
3h0. The

minimum sidelength smin is 0 when two or three sampling rays
intersect at the same surface position.

Similarly to [12], we call the object adequately sampled if we
can guarantee that at least one surfel is projected into the support
of each ouptut pixel filter for orthographic projection and unit mag-
nification. That condition is met if smax, the maximum distance
between adjacent surfels in object space, is less than the radius r0rec
of the desired pixel reconstruction filter. Typically, we choose the
LDI resolution to be slightly higher than this because of the effects
of magnification and perspective projection. We will revisit these
observations when estimating the number of projected surfels per
pixel in Section 7.2.

5.3 Texture Prefiltering
A feature of surfel rendering is that textures are prefiltered and
mapped to object space during preprocessing. We use view-
independent texture filtering as in [12]. To prevent view-dependent
texture aliasing we also apply per-surfel texture filtering during ren-
dering (see Sections 7.4 and 7.6).

To determine the extent of the filter footprint in texture space,
we center a circle at each surfel on its tangent plane, as shown in
Figure 4a. We call these circles tangent disks. The tangent disks are

rpre

b)a)

Texture SpaceObject Space

0

Figure 4: Texture prefiltering with tangent disks.

mapped to ellipses in texture space (see Figure 4b) using the pre-
defined texture parameterization of the surface. An EWA filter [14]
is applied to filter the texture and the resulting color is assigned to
the surfel. To enable adequate texture reconstruction, the elliptical
filter footprints in texture space must overlap each other. Conse-
quently, we choose r

0
pre = smax, the maximum distance between

adjacent surfels in object space, as the radius for the tangent disks.
This usually guarantees that the tangent disks intersect each other
in object space and that their projections in texture space overlap.

Grossman and Dally [12] also use view-independent texture fil-
tering and store one texture sample per surfel. Since we use a mod-
ified z-buffer algorithm to resolve visibility (Section 7.3), not all
surfels may be available for image reconstruction, which leads to
texture aliasing artifacts. Consequently, we store several (typically
three or four) prefiltered texture samples per surfel. Tangent disks
with dyadically larger radii rkpre = smax2

k are mapped to texture
space and used to compute the prefiltered colors. Because of its
similarity to mipmapping [13], we call this a surfel mipmap. Fig-
ure 4b shows the elliptical footprints in texture space of consecu-
tively larger tangent disks.

6 Data Structure
We use the LDC tree, an efficient hierarchical data structure, to
store the LDCs acquired during sampling. It allows us to quickly
estimate the number of projected surfels per pixel and to trade ren-
dering speed for higher image quality.

6.1 The LDC Tree
Chang et al. [4] use several reference depth images of a scene to
construct the LDI tree. The depth image pixels are resampled onto
multiple LDI tree nodes using splatting [29]. We avoid these inter-
polation steps by storing LDCs at each node in the octree that are
subsampled versions of the highest resolution LDC.

The octree is recursively constructed bottom up, and its height is
selected by the user. The highest resolution LDC — acquired dur-
ing geometry sampling — is stored at the lowest level n = 0. If the
highest resolution LDC has a pixel spacing of h0, then the LDC at
level n has a pixel spacing of hn = h02

n. The LDC is subdivided
into blocks with user-specified dimension b, i.e., the LDIs in a block
have b2 layered depth pixels. b is the same for all levels of the tree.
Figure 5a shows two levels of an LDC tree with b = 4 using a 2D
drawing. In the figure, neighboring blocks are differently shaded,

b)a)

Figure 5: Two levels of the LDC tree (shown in 2D).

and empty blocks are white. Blocks on higher levels of the octree
are constructed by subsampling their children by a factor of two.
Figure 5b shows level n = 1 of the LDC tree. Note that surfels at
higher levels of the octree reference surfels in the LDC of level 0,
i.e., surfels that appear in several blocks of the hierarchy are stored
only once and shared between blocks.

Empty blocks (shown as white squares in the figure) are not
stored. Consequently, the block dimension b is not related to the
dimension of the highest resolution LDC and can be selected ar-
bitrarily. Choosing b = 1 makes the LDC tree a fully volumetric
octree representation. For a comparison between LDCs and vol-
umes see [19].

6.2 3-to-1 Reduction
To reduce storage and rendering time it is often useful to optionally
reduce the LDCs to one LDI on a block-by-block basis. Because
this typically corresponds to a three-fold increase in warping speed,
we call this step 3-to-1 reduction. First, surfels are resampled to
integer grid locations of ray intersections as shown in Figure 6.
Currently we use nearest neighbor interpolation, although a more

resampled surfels
on grid locations

LDI 1 surfels
LDI 2 surfels

Figure 6: 3-to-1 reduction example.

sophisticated filter, e.g., splatting as in [4], could easily be imple-
mented. The resampled surfels of the block are then stored in a
single LDI.

The reduction and resampling process degrades the quality of
the surfel representation, both for shape and for shade. Resampled
surfels from the same surface may have very different texture col-
ors and normals. This may cause color and shading artifacts that
are worsened during object motion. In practice, however, we did
not encounter severe artifacts due to 3-to-1 reduction. Because our
rendering pipeline handles LDCs and LDIs the same way, we could
store blocks with thin structures as LDCs, while all other blocks
could be reduced to single LDIs.

As in Section 5.2, we can determine bounds on the surfel density
on the surface after 3-to-1 reduction. Given a sampling LDI with
pixel spacing h0, the maximum distance between adjacent surfels
on the object surface is smax =

p
3h0, as in the original LDC tree.

The minimum distance between surfels increases to smin = h0

due to the elimination of redundant surfels, making the imaginary
Delaunay triangulation on the surface more uniform.

7 The Rendering Pipeline
The rendering pipeline takes the surfel LDC tree and renders it us-
ing hierarchical visibility culling and forward warping of blocks.
Hierarchical rendering also allows us to estimate the number of pro-
jected surfels per output pixel. For maximum rendering efficiency,
we project approximately one surfel per pixel and use the same res-
olution for the z-buffer as in the output image. For maximum image
quality, we project multiple surfels per pixel, use a finer resolution
of the z-buffer, and high quality image reconstruction.

7.1 Block Culling
We traverse the LDC tree from top (the lowest resolution blocks)
to bottom (the highest resolution blocks). For each block, we first
perform view-frustum culling using the block bounding box. Next,
we use visibility cones, as described in [11], to perform the equiv-
alent of backface culling of blocks. Using the surfel normals, we
precompute a visibility cone per block, which gives a fast, con-
servative visibility test: no surfel in the block is visible from any
viewpoint within the cone. In contrast to [11], we perform all visi-
bility tests hierarchically in the LDC tree, which makes them more
efficient.

7.2 Block Warping
During rendering, the LDC tree is traversed top to bottom [4]. To
choose the octree level to be projected, we conservatively estimate
for each block the number of surfels per pixel. We can choose one
surfel per pixel for fast rendering or multiple surfels per pixel for
supersampling. For each block at tree level n, the number of sur-
fels per pixel is determined by i

n

max, the maximum distance be-
tween adjacent surfels in image space. We estimate inmax by divid-
ing the maximum length of the projected four major diagonals of
the block bounding box by the block dimension b. This is correct
for orthographic projection. However, the error introduced by using
perspective projection is small because a block typically projects to
a small number of pixels.

For each block, inmax is compared to the radius r0rec of the de-
sired pixel reconstruction filter. r

0
rec is typically

p
2

2
so, where so

is the sidelength of an output pixel. If inmax of the current block
is larger than r

0
rec then its children are traversed. We project the

block whose i
n

max is smaller than r
0
rec, rendering approximately

one surfel per pixel. Note that the number of surfels per pixel can
be increased by requiring that inmax is a fraction of r0rec. The result-
ing inmax is stored as imax with each projected surfel for subsequent
use in the visibility testing and the image reconstruction stages. The
radius of the actual reconstruction filter is rrec = max(r0rec; imax)
(see Section 7.6).

To warp a block to screen space we use the optimized incre-
mental block warping by Grossman and Dally, presented in detail
in [11]. Its high efficiency is achieved due to the regularity of LDCs.
It uses only 6 additions, 3 multiplications, and 1 reciprocal per sam-
ple. The LDIs in each LDC block are warped independently, which
allows us to render an LDC tree where some or all blocks have been
reduced to single LDIs after 3-to-1 reduction.

7.3 Visibility Testing
Perspective projection, high z-buffer resolution, and magnification
may lead to undersampling or holes in the z-buffer. A z-buffer pixel
is a hole if it does not contain a visible surfel or background pixel
after projection. Holes have to be marked for image reconstruction.
Each pixel of the z-buffer stores a pointer to the closest surfel and
the current minimum depth. Surfel depths are projected to the z-
buffer using nearest neighbor interpolation.

To correctly resolve visibility in light of holes, we scan-convert
the orthographic projection of the surfel tangent disks into the z-
buffer. The tangent disks have a radius of rnt = smax2

n, where
smax is the maximum distance between adjacent surfels in object
space and n is the level of the block. We call this approach visibility
splatting, shown in Figure 7. Visibility splatting effectively sepa-

w

h

amax

amin

N

Approximate
Bounding Box

z-BufferObject Space

b)a)

y

xrt
n

Figure 7: Visibility splatting.

rates visibility calculations and reconstruction of the image, which
produces high quality images and is amenable to hardware imple-
mentation [22].

After orthographic projection, the tangent disks form an ellipse
around the surfel, as shown in Figure 7b. We approximate the el-
lipse with a partially axis-aligned bounding box, shown in red. The
bounding box parallelogram can be easily scan-converted, and each
z-buffer pixel is filled with the appropriate depth (indicated by the
shaded squares in the figure), depending on the surfel normal N .
This scan conversion requires only simple setup calculations, no
interpolation of colors, and no perspective divide.

The direction of the minor axis amin of the projected ellipse is
parallel to the projection of the surfel normal N . The major axis
amax is orthogonal to amin. The length of amax is the projection
of the tangent disk radius rnt , which is approximated by imax. This
approximation takes the orientation and magnification of the LDC
tree during projection into account. Next, we calculate the coordi-
nate axis that is most parallel to amin (the y-axis in Figure 7). The
short side of the bounding box is axis aligned with this coordinate
axis to simplify scan conversion. Its height h is computed by in-
tersecting the ellipse with the coordinate axis. The width w of the

bounding box is determined by projecting the vertex at the inter-
section of the major axis and the ellipse onto the second axis (the
x-axis in Figure 7).

@z

@x
and @z

@y
are the partial derivatives of the surfel depth z with

respect to the screen x and y direction. They are constant because
of the orthographic projection and can be calculated from the unit
normal N . During scan conversion, the depth at each pixel inside
the bounding box is calculated using @z

@x
and @z

@y
. In addition, we

add a small threshold to each projected z value. The threshold pre-
vents surfels that lie on the foreground surface to be accidentally
discarded. Pixels that have a larger z than the z values of the splat-
ted tangent disk are marked as holes.

If the surface is extremely bent, the tangential planes do not
cover it completely, potentially leaving tears and holes. In addi-
tion, extreme perspective projection makes orthographic projection
a bad approximation to the actual projected tangent disk. In prac-
tice, however, we did not see this as a major problem. If the pro-
jected tangent disk is a circle, i.e., if N is almost parallel to the
viewing direction, the bounding box parallelogram is a bad approx-
imation. In this case, we use a square bounding box instead.

Using a somewhat related approach, Grossman and Dally [12]
use a hierarchical z-buffer for visibility testing. Each surfel is pro-
jected and the hole size around the surfel is estimated. The radius of
the hole determines the level of the hierarchical z-buffer where the
z-depth of the surfel will be set. This can be regarded as visibility
splatting using a hierarchical z-buffer. The advantage is that the vis-
ibility splat is performed with a single depth test in the hierarchical
z-buffer. However, the visibility splat is always square, essentially
representing a tangential disk that is parallel to the image plane. In
addition, it is not necessarily centered around the projected surfel.
To recover from those drawbacks, [12] introduces weights indicat-
ing coverage of surfels. But this makes the reconstruction process
more expensive and does not guarantee complete coverage of hid-
den surfaces.

7.4 Texture Filtering
As explained in Section 5.3, each surfel in the LDC tree stores sev-
eral prefiltered texture colors of the surfel mipmap. During render-
ing, the surfel color is linearly interpolated from the surfel mipmap
colors depending on the object minification and surface orientation.
Figure 8a shows all visible surfels of a sampled surface projected
to the z-buffer. The ellipses around the centers of the surfels mark
the projection of the footprints of the highest resolution texture pre-
filter (Section 5.3). Note that during prefiltering, we try to guar-
antee that the footprints cover the surface completely. In figure 8b

a) b)

sz sz

Figure 8: Projected surfel mipmaps.

the number of samples per z-buffer pixel is limited to one by ap-
plying z-buffer depth tests. In order to fill the gaps appearing in
the coverage of the surface with texture footprints, the footprints of
the remaining surfels have to be enlarged. If surfels are discarded
in a given z-buffer pixel, we can assume that the z-buffer pixels in
the 3x3 neighborhood around it are not holes. Thus the gaps can be
filled if the texture footprint of each surfel covers at least the area of
a z-buffer pixel. Consequently, the ellipse of the projected footprint
has to have a minor radius of

p
2sz in the worst case, where sz is

the z-buffer pixel spacing. But we ignore that worst case and usep
2

2
sz, implying that surfels are projected to z-buffer pixel centers.

Figure 8b shows the scaled texture footprints as ellipses around pro-
jected surfels.

To select the appropriate surfel mipmap level, we use traditional
view-dependent texture filtering, as shown in Figure 9. A circle with

Object Tangent SpaceImage Space

sz

rpre

rpre

k

k+1

Figure 9: Projected pixel coverage.

radius
p
2

2
sz is projected through a pixel onto the tangent plane of

the surface from the direction of the view, producing an ellipse in
the tangent plane. In this calculation, the projection of the circle is
approximated with an orthographic projection. Similar to isotropic
texture mapping, the major axis of the projected tangent space el-
lipse is used to determine the surfel mipmap level. The surfel color
is computed by linear interpolation between the closest two mipmap
levels with prefilter radii rkpre and r

k+1
pre , respectively.

7.5 Shading
The illumination model is usually applied before visibility testing.
However, deferred shading after visibility testing avoids unneces-
sary work. Grossman and Dally [12] perform shading calculations
in object space to avoid transformation of normals to camera space.
However, we already transform the normals to camera space during
visibility splatting (Section 7.3). With the transformed normals at
hand, we use cube reflectance and environment maps [28] to calcu-
late a per-surfel Phong illumination model. Shading with per-surfel
normals results in high quality specular highlights.

7.6 Image Reconstruction and Antialiasing
Reconstructing a continuous surface from projected surfels is fun-
damentally a scattered data interpolation problem. In contrast to
other approaches, such as splatting [29], we separate visibility cal-
culations from image reconstruction [22]. Z-buffer pixels with
holes are marked during visibility splatting. These hole pixels are
not used during image reconstruction because they do not contain
any visible samples. Figure 10 shows the z-buffer after rendering
of an object and the image reconstruction process.

a) b)

sz=so sz
sorrec

rrec

Figure 10: Image reconstruction.

The simplest and fastest approach, shown in Figure 10a, is to
choose the size of an output pixel so to be the same as the z-
buffer pixel size sz . Surfels are mapped to pixel centers using near-
est neighbor interpolation, shown with color squares in the figure.
Holes are marked with a black X. Recall that during forward warp-
ing each surfel stores imax, an estimate of the maximum distance
between adjacent projected surfels of a block. imax is a good esti-
mate for the minimum radius of a pixel filter that contains at least
one surfel. To interpolate the holes, we use a radially symmetric
Gauss filter with a radius rrec slightly larger than imax positioned
at hole pixel centers. Alternatively, to fill the holes we implemented

the pull-push algorithm used by Grossman and Dally [12] and de-
scribed by Gortler et al.[9].

A high quality alternative is to use supersampling, shown in Fig-
ure 10b. The output image pixel size so is any multiple of the z-
buffer pixel size sz . Dotted lines in the figure indicate image-buffer
subpixels. Rendering for supersampling proceeds exactly the same
as before. During image reconstruction we put a Gaussian filter at
the centers of all output pixels to filter the subpixel colors. The ra-
dius of the filter is rrec = max(r0rec; imax). Thus rrec is at least

as large as r0rec =
p
2

2
so, but it can be increased if imax indicates a

low density of surfels in the output image.
It is instructive to see how the color of an output pixel is deter-

mined for regular rendering and for supersampling in the absence
of holes. For regular rendering, the pixel color is found by nearest
neighbor interpolation from the closest visible surfel in the z-buffer.
The color of that surfel is computed by linear interpolation between
two surfel mipmap levels. Thus the output pixel color is calculated
from two prefiltered texture samples. In the case of supersampling,
one output pixel contains the filtered colors of one surfel per z-
buffer subpixel. Thus, up to eight prefiltered texture samples may
contribute to an output pixel for 2�2 supersampling. This produces
image quality similar to trilinear mipmapping.

Levoy and Whitted [18] and Chang et al. [4] use an algorithm
very similar to Carpenter’s A-Buffer [2] with per-pixel bins and
compositing of surfel colors. However, to compute the correct per
pixel coverage in the A-buffer requires projecting all visible sur-
fels. Max [20] uses an output LDI and an A-buffer for high qual-
ity anti-aliasing, but he reports rendering times of 5 minutes per
frame. Our method with hierarchical density estimation, visibility
splatting, and surfel mipmap texture filtering offers more flexible
speed-quality tradeoffs.

8 Implementation and Results
We implemented sampling using the Blue Moon Rendering Tools
(BMRT) ray tracer [10]. We use a sampling resolution of 5122 for
the LDC for 4802 expected output resolution. At each intersec-
tion point, a Renderman shader performs view-independent calcu-
lations, such as texture filtering, displacement mapping, and bump
mapping, and prints the resulting surfels to a file. Pre-processing
for a typical object with 6 LOD surfel mipmaps takes about one
hour.

A fundamental limitation of LDC sampling is that thin struc-
tures that are smaller than the sampling grid cannot be correctly
represented and rendered. For example, spokes, thin wires, or hair
are hard to capture. The rendering artifacts are more pronounced
after 3-to-1 reduction because additional surfels are deleted. How-
ever, we had no problems sampling geometry as thin as the legs and
wings of the wasp shown in Figure 1 and Figure 12.

The surfel attributes acquired during sampling include a surface
normal, specular color, shininess, and three texture mipmap levels.
Material properties are stored as an index into a table. Our system
does currently not support transparency. Instead of storing a normal
we store an index to a quantized normal table for reflection and
environment map shading [28]. Table 1 shows the minimum storage
requirements per surfel. We currently store RGB colors as 32-bit
integers for a total of 20 Bytes per surfel.

Data Storage
3 texture mipmap levels 3� 32 bits
Index into normal table 16 bit
LDI depth value 32 bit
Index into material table 16 bit
Total per sample: 20 Bytes

Table 1: Typical storage requirements per surfel.

Table 2 lists the surfel objects that we used for performance anal-
ysis with their geometric model size, number of surfels, and file size

Figure 11: Tilted checker plane. Reconstruction filter: a) Nearest neighbor. b) Gaussian filter. c) Supersampling.

before and after 3-to-1 reduction. All models use three LODs and
three surfel mipmap levels. The size of the LDC tree is about a
factor of 1.3 larger than the LDC acquired during sampling. This

Data # Polys 3 LDIs 3-to-1 Reduced
Salamander 81 k 112 k / 5 MB 70 k / 3 MB
Wasp 128 k 369 k / 15 MB 204 k / 8 MB
Cab 155 k 744 k / 28 MB 539 k / 20 MB

Table 2: Geometric model sizes and storage requirements (# surfels
/ file size) for full and 3-to-1 reduced LDC trees.

overhead is due to the octree data structure, mainly because of the
pointers from the lower resolution blocks to surfels of the sampled
LDC. We currently do not optimize or compress the LDC tree.

Figure 1 shows different renderings of surfel objects, including
environment mapping and displacement mapping. Figure 12 shows
an example of hole detection and image reconstruction. Visibility
splatting performs remarkably well in detecting holes. However,
holes start to appear in the output image for extreme closeups when
there are less than approximately one surfel per 30 square pixels.

Figure 12: Hole detection and image reconstruction. a) Surfel ob-
ject with holes. b) Hole detection (hole pixels in green). c) Image
reconstruction with a Gaussian filter.

To compare image quality of different reconstruction filters, we
rendered the surfel checker plane shown in Figure 11. There is an
increasing number of surfels per pixel towards the top of the image,
while holes appear towards the bottom for nearest neighbor recon-
struction. However, a checker plane also demonstrates limitations
of the surfel representation. Because textures are applied during
sampling, periodic texture patterns are stored explicitly with the
object instead of by reference. In addition, flat surfaces are much
more efficiently rendered using image space rasterization, where
attributes can be interpolated across triangle spans.

Table 3 shows rendering performance broken down into percent-
ages per major rendering tasks. The frame rates were measured on
a 700 MHz Pentium III system with 256 MB of SDRAM using an
unoptimized C version of our program. All performance numbers
are averaged over one minute of an animation that arbitrarily rotates

Data WRP VIS SHD REC CLR fps
Output image: 256 � 256

Salamander 39% 3% 28% 17% 13% 11.2
Wasp 61% 4% 21% 8% 8% 6.0
Cab 91% 2% 5% 1% 1% 2.5

Output image: 480 � 480
Salamander 14% 18% 31% 22% 16% 4.6
Wasp 3to1 29% 17% 29% 15% 9% 2.7
Wasp 3LDI 48% 13% 22% 11% 6% 2.0
Wasp SS 15% 22% 28% 18% 16% 1.3
Cab 74% 7% 11% 5% 3% 1.4

Output image: 1024� 1024
Salamander 5% 14% 26% 32% 23% 1.3
Wasp 13% 19% 25% 26% 17% 1.0
Cab 16% 36% 24% 16% 8% 0.6

Table 3: Rendering times with breakdown for warping (WRP), vis-
ibility splatting (VIS), Phong shading (SHD), image reconstruction
(REC), and framebuffer clear (CLR). Reconstruction with pull-push
filter. All models, except Wasp 3LDI, are 3-to-1 reduced. Wasp SS
indicates 2x2 supersampling.

the object centered at the origin. The animation was run at three dif-
ferent image resolutions to measure the effects of magnification and
holes.

Similar to image-based rendering, the performance drops almost
linearly with increasing output resolution. For 2562 or object mini-
fication, the rendering is dominated by warping, especially for ob-
jects with many surfels. For 10242 , or large object magnification,
visibility splatting and reconstruction dominate due to the increas-
ing number of surface holes. The performance difference between
a full LDC tree (Wasp 3LDI) and a reduced LDC tree (Wasp 3to1)
is mainly in the warping stage because fewer surfels have to be
projected. Performance decreases linearly with supersampling, as
shown for 2x2 supersampling at 4802 resolution (Wasp SS). The
same object at 10242 output resolution with no supersampling per-
forms almost identically, except for slower image reconstruction
due to the increased number of hole pixels.

To compare our performance to standard polygon rendering, we
rendered the wasp with 128k polygons and 2.3 MB for nine tex-
tures using a software-only Windows NT OpenGL viewing pro-
gram. We used GL LINEAR MIPMAP NEAREST for texture fil-
tering to achieve similar quality as with our renderer. The average
performance was 3 fps using the Microsoft OpenGL implementa-
tion (opengl32.lib) and 1.7 fps using Mesa OpenGL. Our unopti-
mized surfel renderer achieves 2.7 fps for the same model, which
compares favorably with Mesa OpenGL. We believe that further
optimization will greatly improve our performance.

Choosing the block size b for the LDC tree nodes has an influ-
ence on block culling and warping performance. We found that
a block size of b = 16 is optimal for a wide range of objects.
However, the frame rates remain practically the same for different
choices of b due to the fact that warping accounts for only a fraction
of the overall rendering time.

Because we use a z-buffer we can render overlapping surfel ob-
jects and integrate them with traditional polygon graphics, such as
OpenGL. However, the current system supports only rigid body an-
imations. Deformable objects are difficult to represent with surfels
and the current LDC tree data structure. In addition, if the surfels
do not approximate the object surface well, for example after 3-to-
1 reduction or in areas of high curvature, some surface holes may
appear during rendering.

9 Future Extensions
A major strength of surfel rendering is that in principal we can con-
vert any kind of synthetic or scanned object to surfels. We would
like to extend our sampling approach to include volume data, point
clouds, and LDIs of non-synthetic objects. We believe that substan-
tial compression of the LDC tree can be achieved using run length
encoding or wavelet-based compression techniques. The perfor-
mance of our software renderer can be substantially improved by
using Pentium III SSE instructions. Using an occlusion compat-
ible traversal of the LDC tree [21], one could implement order-
independent transparency and true volume rendering.

Our major goal is the design of a hardware architecture for sur-
fel rendering. Block warping is very simple, involving only two
conditionals for z-buffer tests [11]. There are no clipping calcula-
tions. All framebuffer operations, such as visibility splatting and
image reconstruction, can be implemented using standard rasteri-
zation and framebuffer techniques. The rendering pipeline uses no
inverse calculations, such as looking up textures from texture maps,
and runtime texture filtering is very simple. There is a high degree
of data locality because the system loads shape and shade simul-
taneously and we expect high cache performance. It is also possi-
ble to enhance an existing OpenGL rendering pipeline to efficiently
support surfel rendering.

10 Conclusions
Surfel rendering is ideal for models with very high shape and shade
complexity. As we move rasterization and texturing from the core
rendering pipeline to the preprocessing step, the rendering cost per
pixel is dramatically reduced. Rendering performance is essentially
determined by warping, shading, and image reconstruction — oper-
ations that can easily exploit vectorization, parallelism, and pipelin-
ing.

Our surfel rendering pipeline offers several speed-quality trade-
offs. By decoupling image reconstruction and texture filtering we
achieve much higher image quality than comparable point sample
approaches. We introduce visibility splatting, which is very effec-
tive at detecting holes and increases image reconstruction perfor-
mance. Antialiasing with supersampling is naturally integrated in
our system. Our results demonstrate that surfel rendering is capable
of high image quality at interactive frame rates. Increasing proces-
sor performance and possible hardware support will bring it into the
realm of real-time performance.

11 Acknowledgments
We would like to thank Ron Perry and Ray Jones for many helpful
discussions, Collin Oosterbaan and Frits Post for their contributions
to an earlier version of the system, and Adam Moravanszky and Si-
mon Schirm for developing a surfel demo application. Thanks also
to Matt Brown, Mark Callahan, and Klaus Müller for contributing
code, and to Larry Gritz for his help with BMRT [10]. Finally,
thanks to Alyn Rockwood, Sarah Frisken, and the reviewers for

their constructive comments, and to Jennifer Roderick for proof-
reading the paper.

References
[1] Animatek. Caviar Technology. Web page. http://www.animatek.com/.
[2] L. Carpenter. The A-buffer, an Antialiased Hidden Surface Method. In Computer

Graphics, volume 18 of SIGGRAPH ’84 Proceedings, pages 103–108. July 1984.
[3] E. E. Catmull. A Subdivision Algorithm for Computer Display of Curved Sur-

faces. Ph.D. thesis, University of Utah, Salt Lake City, December 1974.
[4] C.F. Chang, G. Bishop, and A. Lastra. LDI Tree: A Hierarchical Representation

for Image-Based Rendering. In Computer Graphics, SIGGRAPH ’99 Proceed-
ings, pages 291–298. Los Angeles, CA, August 1999.

[5] S. E. Chen. Quicktime VR – An Image-Based Approach to Virtual Environment
Navigation. In Computer Graphics, SIGGRAPH ’95 Proceedings, pages 29–38.
Los Angeles, CA, August 1995.

[6] W. Dally, L. McMillan, G. Bishop, and H. Fuchs. The Delta Tree: An Object-
Centered Approach to Image-Based Rendering. Technical Report AIM-1604, AI
Lab, MIT, May 1996.

[7] M. Deering. Data Complexity for Virtual Reality: Where do all the Triangles
Go? In IEEE Virtual Reality Annual International Symposium (VRAIS), pages
357–363. Seattle, WA, September 1993.

[8] D. Ebert, F. Musgrave, D. Peachey, K. Perlin, and S. Worley. Texturing & Mod-
eling - A Procedural Approach. AP Professional, second edition, 1994.

[9] S. Gortler, R. Grzeszczuk, R. Szeliski, and M. Cohen. The Lumigraph. In Com-
puter Graphics, SIGGRAPH ’96 Proceedings, pages 43–54. New Orleans, LS,
August 1996.

[10] L. Gritz. Blue Moon Rendering Tools. Web page. http://www.bmrt.org/.
[11] J. P. Grossman. Point Sample Rendering. Master’s thesis, Department of Elec-

trical Engineering and Computer Science, MIT, August 1998.
[12] J. P. Grossman and W. Dally. Point Sample Rendering. In Rendering Techniques

’98, pages 181–192. Springer, Wien, Vienna, Austria, July 1998.
[13] P. Heckbert. Survey of Texture Mapping. IEEE Computer Graphics & Applica-

tions, 6(11):56–67, November 1986.
[14] P. Heckbert. Fundamentals of Texture Mapping and Image Warping. Master’s

thesis, University of California at Berkeley, Department of Electrical Engineer-
ing and Computer Science, June 17 1989.

[15] G. T. Herman. Discrete Multidimensional Jordan Surfaces. CVGIP: Graphical
Modeling and Image Processing, 54(6):507–515, November 1992.

[16] A. Kaufman, D. Cohen, and R. Yagel. Volume Graphics. Computer, 26(7):51–
64, July 1993.

[17] M. Levoy and P. Hanrahan. Light Field Rendering. In Computer Graphics,
SIGGRAPH ’96 Proceedings, pages 31–42. New Orleans, LS, August 1996.

[18] M. Levoy and T. Whitted. The Use of Points as Display Primitives. Technical
Report TR 85-022, The University of North Carolina at Chapel Hill, Department
of Computer Science, 1985.

[19] D. Lischinski and A. Rappoport. Image-Based Rendering for Non-Diffuse Syn-
thetic Scenes. In Rendering Techniques ’98, pages 301–314. Springer, Wien,
Vienna, Austria, June 1998.

[20] N. Max. Hierarchical Rendering of Trees from Precomputed Multi-Layer Z-
Buffers. In Rendering Techniques ’96, pages 165–174. Springer, Wien, Porto,
Portugal, June 1996.

[21] L. McMillan and G. Bishop. Plenoptic Modeling: An Image-Based Rendering
System. In Computer Graphics, SIGGRAPH ’95 Proceedings, pages 39–46. Los
Angeles, CA, August 1995.

[22] V. Popescu and A. Lastra. High Quality 3D Image Warping by Separating Vis-
ibility from Reconstruction. Technical Report TR99-002, University of North
Carolina, January 15 1999.

[23] W. T. Reeves. Particle Systems – A Technique for Modeling a Class of Fuzzy
Objects. In Computer Graphics, volume 17 of SIGGRAPH ’83 Proceedings,
pages 359–376. July 1983.

[24] G. Schaufler. Per-Object Image Warping with Layered Impostors. In Rendering
Techniques ’98, pages 145–156. Springer, Wien, Vienna, Austria, June 1998.

[25] J. Shade, S. J. Gortler, L. He, and R. Szeliski. Layered Depth Images. In Com-
puter Graphics, SIGGRAPH ’98 Proceedings, pages 231–242. Orlando, FL, July
1998.

[26] A. R. Smith. Smooth Operator. The Economist, pages 73–74, March 6 1999.
Science and Technology Section.

[27] J. Torborg and J. Kajiya. Talisman: Commodity Real-Time 3D Graphics for the
PC. In Computer Graphics, SIGGRAPH ’96 Proceedings, pages 353–364. New
Orleans, LS, August 1996.

[28] D. Voorhies and J. Foran. Reflection Vector Shading Hardware. In Computer
Graphics, Proceedings of SIGGRAPH 94, pages 163–166. July 1994.

[29] L. Westover. Footprint Evaluation for Volume Rendering. In Computer Graph-
ics, Proceedings of SIGGRAPH 90, pages 367–376. August 1990.

Acquisition and Visualization of
Surface Light Fields

SIGGRAPH 2001 Course 46 Notes

Session 7:

Eigen-Texture Method for Compression and Synthesis of Reflectance Data

Yoichi Sato
University of Tokyo

1

Eigen-Texture Method for Object
Re-Illumination
Eigen-Texture Method for Object
Re-Illumination

Yoichi SatoYoichi Sato
Institute of Industrial ScienceInstitute of Industrial Science

The University of TokyoThe University of Tokyo

Point-wise BRDF MeasurementPoint-wise BRDF Measurement

• Sampling of reflected lights over all illumination
and viewing directions

goniometer

sensor
light source

test piece

measured BRDF

2

Image-Based BRDF ModelingImage-Based BRDF Modeling

• Modeling the BRDF of a real object (not a test
piece)

light source

camera

Image-Based BRDF Modeling:
Model-Based Approach
Image-Based BRDF Modeling:
Model-Based Approach

shapeshape BRDF ModelingBRDF Modeling

camera

range finder

light source

range images color images

3

Surface Shape as Triangular MeshSurface Shape as Triangular Mesh

range images

volume datamergingmerging

iso-surface extractioniso-surface extraction

triangular mesh

alignmentalignment

[Wheeler98]

Estimation of Surface Normals
and Reflectance Properties
Estimation of Surface Normals
and Reflectance Properties

• Consider grid points within each triangular patch

• Estimate surface normal at each grid point

Used for BRDF modeling, too

• Issue of sampling frequency

grid points

4

Sampling of Reflected LightSampling of Reflected Light

• Project input color images onto the recovered
object surface shape

• Reflected light at each surface point

frame number

in
te

ns
ity

Difficulties in Image-Based BRDF
Measurement
Difficulties in Image-Based BRDF
Measurement

Modeling a BRDF is difficult due to:Modeling a BRDF is difficult due to:
• 4 degree of freedoms of a BRDF

• Secondary reflection

• Effect of illumination

• Spatially varying reflectance properties

5

Approach for BRDF ModelingApproach for BRDF Modeling

High DOF in BRDFHigh DOF in BRDF
• Assume a reflectance model with few parameters

Secondary reflection in imagesSecondary reflection in images
• Assume no secondary reflection

Effect of illuminationEffect of illumination
• Controlled illumination for image sampling

22 2/

cos
1cos σα

θ
θ −+ eKK

r
SiD

diffuse specular

Diffuse and Specular ComponentsDiffuse and Specular Components

Diffuse componentDiffuse component
• Always observable
• Few samplings would be suffice

– Single measurement for Lambertian surface

SpecularSpecular componentcomponent
• Observed very sparsely
• Multiple samples for estimating parameters
• Sensitive for surface normal error

Treat each component separatelyTreat each component separately

6

Separation of Reflection
Components
Separation of Reflection
Components

Techniques for reflection component separationsTechniques for reflection component separations
• Linear reflection model [Shashua92]

specularity as non-linear component

• Temporal-color space [Sato94]

separation from a color image sequence based on color

• Polarization of specular component [Wolff91]

linear polarization of specular component

Example of Separation ResultExample of Separation Result

frame number

in
te

ns
ity

0 100
frame number

in
te

ns
ity

0 100

observed color sequence separation result

7

Specular Parameter EstimationSpecular Parameter Estimation

Identify Identify specularspecular highlightshighlights
• Estimate specular parameters at those points

Interpolation of Interpolation of specularspecular parametersparameters
• Assign specular parameters to other points:

• Based on region segmentation [Sato96]
• By interpolating over the surface based on distance

[SIGGRAPH97]

Estimated Reflectance
Parameters
Estimated Reflectance
Parameters

specular magnitude surface roughness
diffuse color

and magnitude

8

Synthesized ImagesSynthesized Images

video clip

Comparison of Input and
Synthesized Images
Comparison of Input and
Synthesized Images

Input color images

Synthesized images

9

Limitations of Model-Based
Method
Limitations of Model-Based
Method

ShortcomingsShortcomings
• Approximation with a parametric reflection model

• Requirement for accurate surface normal directions

• No secondary reflection

Difficulties for hairly objects, for instance

Alternative approachAlternative approach
• Rather than estimating reflectance parameters, represent

appearance of the object

Appearance-Based Method:
Objectives
Appearance-Based Method:
Objectives

• Compact representation of object appearance

• c.f. only reflectance parameters for model-based
method

• New images of the object under arbitrary
illumination and viewing conditions

10

Appearance-Based Method:
Approach
Appearance-Based Method:
Approach

SamplingSampling
• Sample appearances of an object under varying illumination

and viewing directions

EncodingEncoding
• Represent recorded appearances in terms of each surface

patch

• Appearance compression based on 3D surface shape model

DecodingDecoding
• Re-generate object appearances for novel illumination and

viewing directions

Eigen-Texture Method:
Overview
Eigen-Texture Method:
Overview

color images mesh model

Appearance Model

synthesized view

encoding decoding

11

Projection of Sampled ImagesProjection of Sampled Images

mapping
color images

3D mesh model

Appearance Change of Each PatchAppearance Change of Each Patch

Highly correlated appearance changeHighly correlated appearance change
• change of diffuse shading and specularity

θ

357°

appearance change of one patch

θ

0°

12

Measurement MatrixMeasurement Matrix

One viewOne view

A sequence of M viewsA sequence of M views

),,,(21 NxxxX K
r
= 2

)1(−
=

nnNn

n

=

MX

X
X

r
M

r

r

2

1

X

KL-Compression of Cell ViewsKL-Compression of Cell Views

sequence of cell images

averagea x−= XX

a
T
aXXQ =

iii Qee =λ

Ke

e
e

M
2

1

K eigen vectors

scores

k eigen-images

+

13

Piecewise DecodingPiecewise Decoding

a0× + a1× + a3×

linear combination of base images

synthesized viewscores

k eigen-images

+

Compactness of RepresentationCompactness of Representation

observed appearance

scores

k eigen-images

&
NM ×

NM
NMK

×
+

× NK ×

KM ×

14

Required Number of Eigen-ImagesRequired Number of Eigen-Images

• Depends on several factors including surface shape
and reflection components.

– More for cast-shadows, interreflections, error in surface
shape, etc.

33diffusenon-planer

11diffuseplaner

4+4+diffuse+specular

22diffuse+specular

of of eigeneigen--imagesimagesreflectionreflectionpatch shapepatch shape

Synthesized Image:
3 Dimensions
Synthesized Image:
3 Dimensions

original input k = 3
reduction: 120 → 3

15

Synthesized Image:
8 Dimensions
Synthesized Image:
8 Dimensions

original input reduction: 120 → 8
k = 8

Synthesized Image Sequence:
8 Dimensions
Synthesized Image Sequence:
8 Dimensions

16

Cell-Adaptive Control for
Appearance Encoding
Cell-Adaptive Control for
Appearance Encoding

• Required number of Eigen-images varies from
patch to patch

• Control the compression ratio adaptively to
achieve efficient compression while maintaining
accuracy

• Intuitive control for compression, c.f., IBR.

• Fixed threshold value for eigen-ratio

Eigen-ratioEigen-ratio

Information obtained in the compressionInformation obtained in the compression

Fixed threshold for Fixed threshold for eigeneigen--ratio ratio to choose Kto choose K

∑

∑

=

=
N

i
i

K

i
i

1

1

λ

λ
Eigen-ratio =

17

Synthesized Images:
Cell-Adaptive Control
Synthesized Images:
Cell-Adaptive Control

original input eigen-ratio = 0.999
average number = 8.3

Synthesized Images:
Cell-Adaptive Control
Synthesized Images:
Cell-Adaptive Control

Synthesized images
(Eigen-ratio=0.999)

input images

18

Image Synthesis for Novel ViewsImage Synthesis for Novel Views

Interpolation of Scores

Image synthesis for novel views
not included in sampled images

k eigen-images

scores

Interpolation of Scores in Eigen-
Space
Interpolation of Scores in Eigen-
Space

30 input images

Interpolation in eigen-space

120 synthetic views

19

Example of InterpolationExample of Interpolation

original inputs Interpolated views

Limitations of InterpolationLimitations of Interpolation

• Interpolation of eigen scores does not produce
specularity correctly.

• “fade-out and fade-in” effect

• Treat two reflection components differently

• reflection component separation
• representation of specularity for re-illumination

– e.g., Linear combination model for specularity by Lin and
Lee [Lin99]

20

Re-Illumination of ObjectsRe-Illumination of Objects

Object image for novel illumination Object image for novel illumination
directionsdirections
• Interpolation of eigen scores as we did for new

object poses

• The same problem for reproduction of the specular
reflection component

Re-illumination of ObjectsRe-illumination of Objects

Rendering object images under arbitrary Rendering object images under arbitrary
illumination conditionsillumination conditions
• Approximation of arbitrary illumination distribution as a

linear combination of directional light sources

• Linear combination of base images taken under those
directional light sources

• Weights for the linear combination need to be determined
for the illumination distribution

21

Sampling for Illumination
Directions
Sampling for Illumination
Directions

+ +

gantry for illumination sampling

Superimposed ViewSuperimposed View

22

SummarySummary

Modeling appearance of a real object:Modeling appearance of a real object:
Model-based method

• Parametric reflectance function
• Estimation of reflectance parameters over the

entire surface of an object

Appearance-based method (Eigen-texture method)
• Appearance compression based on the 3D surface

model of an object
• Novel views with interpolation of eigen scores

Further IssuesFurther Issues

Sampling under uncontrolled illumination
Sensor planning for the best accuracy with the fixed

number of samplings
Extension from RGB color space to spectral domain
More accurate geometric/photometric calibration

Slides are available fromSlides are available from

http://www.hci.iis.u-tokyo.ac.jp/~ysato

23

ReferencesReferences
[Lin99]

S. Lin and S. W. Lee, “A representation of specular appearance,” IEEE International Conference on Computer
Vision (ICCV’99) , September 1999.

[Murakami82]
H. Murakami and V. Kumar, “Efficient calculation of primary images from a set of images,” IEEE Trans. PAMI, vol.
4, no. 5, pp. 511-515, 1982.

[Nishino99a]
K. Nishino, Y. Sato, and K. Ikeuchi, "Eigen-texture method: appearance compression based on 3D model," Proc.
IEEE Conference on Computer Vision and Pattern Recognition (CVPR'99), pp. 618-624, June 1999.

[Nishino99b]
K. Nishino, Y. Sato, and K. Ikeuchi, “Appearance compression and synthesis based on 3D model for mixed reality,”
Proc. IEEE International Conference on Computer Vision (ICCV’99), pp. 38-45, September 1999.

[Sato94]
Y. Sato and K. Ikeuchi, “Temporal-color space analysis of reflection,” Journal of Optical Society of America A,
vol. 11, no. 11, pp. 2990-3002, November 1994.

[Sato96]
Y. Sato and K. Ikeuchi, “Reflectance analysis for 3D computer graphics model generation,” Graphical Models and
Image Processing, vol. 58, no. 5, pp. 437-451, September 1996.

[Sato97]
Y. Sato, M. D. Wheeler, and K. Ikeuchi, "Object shape and reflectance modeling from observation", Proc. ACM
SIGGRAPH 97, pp. 379-387, August 1997.

[Shashua92]
A. Shashua, “Geometry and photometry in 3D visual recognition,” Ph.D. Thesis, MIT, 1992.

[Wolff91]
L. B. Wolff and T. E. Boult, “Constraining object features using a polarization reflectance model,” IEEE Trans.
PAMI, vol. 13, no. 6, pp. 635-657, 1991.

Object Shape and Reflectance Modeling from Observation

Yoichi Sato

1

, Mark D. Wheeler

2

, and Katsushi Ikeuchi

1

1

Institute of Industrial Science
University of Tokyo

2

Apple Computer Inc.

ABSTRACT

An object model for computer graphics applications should contain
two aspects of information: shape and reflectance properties of the
object. A number of techniques have been developed for modeling
object shapes by observing real objects. In contrast, attempts to
model reflectance properties of real objects have been rather limited.
In most cases, modeled reflectance properties are too simple or too
complicated to be used for synthesizing realistic images of the
object.

In this paper, we propose a new method for modeling object reflec-
tance properties, as well as object shapes, by observing real objects.
First, an object surface shape is reconstructed by merging multiple
range images of the object. By using the reconstructed object shape
and a sequence of color images of the object, parameters of a reflec-
tion model are estimated in a robust manner. The key point of the
proposed method is that, first, the diffuse and specular reflection
components are separated from the color image sequence, and then,
reflectance parameters of each reflection component are estimated
separately. This approach enables estimation of reflectance proper-
ties of real objects whose surfaces show specularity as well as dif-
fusely reflected lights. The recovered object shape and reflectance
properties are then used for synthesizing object images with realistic
shading effects under arbitrary illumination conditions.

CR Descriptors:

 I.2.10 [

Artificial Intelligence

]: Vision and
Scene Understanding -

Modeling and recovery of physical
attributes

; I.3.7 [

Computer Graphics

]: Three-Dimensional Graph-
ics and Realism -

Color, shading, shadowing, and texture

; I.3.3
[

Computer Graphics

]: Picture/Image Generation -

Digitizing and
scanning

1 INTRODUCTION

As a result of significant advancement of graphics hardware
and image rendering algorithms, the 3D computer graphics capabil-
ity has become available even on low-end computers. In addition, the
rapid spread of the internet technology has caused a significant

increase in the demand for 3D computer graphics. For instance, a
new format for 3D computer graphics on the internet, called VRML,
is becoming an industrial standard format, and the number of appli-
cations using the format is increasing quickly.

However, it is often the case that 3D object models are created
manually by users. That input process is normally time-consuming
and can be a bottleneck for realistic image synthesis. Therefore,
techniques to obtain object model data automatically by observing
real objects could have great significance in practical applications.

An object model for computer graphics applications should
contain two aspects of information: shape and reflectance properties
of the object. A number of techniques have been developed for mod-
eling object shapes by observing real objects. Those techniques use
a wide variety of approaches which includes range image merging,
shape from motion, shape from shading, and photometric stereo. In
contrast, attempts to model reflectance properties of real objects
have been rather limited. In most cases, modeled reflectance proper-
ties are too simple or too complicated to be used for synthesizing
realistic images of the object. For example, if only observed color
texture or diffuse texture of a real object surface is used (e.g., texture
mapping), correct shading effects such as highlights cannot be repro-
duced correctly in synthesized images. If highlights on the object
surface are observed in original color images, the highlights are
treated as diffuse texture on the object surface and, therefore, remain
on the object surface permanently regardless of illuminating and
viewing conditions. On the other hand, object reflectance properties
can be represented accurately by a bidirectional reflectance distribu-
tion function (BRDF). If a BRDF is available for the object surface,
shading effects can be, in principle, reproduced correctly in synthe-
sized images. However, the use of BRDF is not practical because
measurement of BRDF is usually very expensive and time-consum-
ing. In practice, we cannot obtain a BRDF for real objects with vari-
ous reflectance properties.

Recently, several techniques to obtain object surface shapes
and reflectance properties only from intensity images have been
developed. Sato and Ikeuchi [15] introduced a method to analyze a
sequence of color images taken under a moving light source. They
successfully estimated reflectance function parameters, as well as
object shape, by explicitly separating the diffuse and specular reflec-
tion components. Lu and Little [11] developed a method to estimate
a reflectance function from a sequence of black and white images of
a rotating smooth object, and the object shape was successfully
recovered using the estimated reflectance function. Since the reflec-
tance function is measured directly from the input image sequence,
the method does not assume a particular reflection model such as the
Lambertian model which is commonly used in computer vision.
However, their algorithm can be applied to object surfaces with uni-
form reflectance properties, and it cannot be easily extended to over-
come this limitation.

Another interesting attempt for measuring a reflectance func-
tion from intensity images has been reported by Ward [20]. Ward
designed a special device with a half-silvered hemisphere and a CCD
video camera, which can measure a BRDF of anisotropic reflection.

1

 Department of Electrical Engineering and Electronics, Institute of
Industrial Science, University of Tokyo, 7-22-1 Roppongi,
Minato-ku, Tokyo 106, Japan. {ysato, ki}@iis.u-tokyo.ac.jp.
See also http://www.cvl.iis.u-tokyo.ac.jp/~ysato.

2

 Apple Computer Inc., 1 Infinite Loop, MS:301-3M, Cupertino,
CA 95014. mdwheel@apple.com.

Copyright Notice
Copyright ©1997 by the Association for Computing Machinery, Inc. Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on servers, or to distribute to lists, requires prior specific permission and/or a fee. Request permissions from Publications Dept, ACM Inc., fax +1 (212) 869-0481, or permissions@acm.org.

The main advantage of the device is that it takes significantly less
time to measure a BRDF than a conventional gonioreflectometer. A
BRDF of a real object surface has been measured by the device and
highly realistic images have been synthesized. However, this
approach cannot be easily extended for modeling real objects with
various reflectance properties. This approach still requires a small
piece of test material for measuring the material’s BRDF.

Techniques to measure object surface shape and reflectance
properties simultaneously by using both range images and black
and white intensity images have been studied by other researchers.
Ikeuchi and Sato [7] originally developed a method to measure
object shapes and reflection function parameters from a range
image and intensity image pair. In their attempt, the surface shape
is recovered from the range image at first, and then surface normals
of the recovered object surface are used for reflectance parameter
estimation. The main drawback of the method is that it assumes
uniform reflectance properties over the object surface. Additionally,
only partial object shape was recovered because only one range
image was used.

Baribeau, Rioux, and Godin [1] measured three reflectance
parameters that they call the diffuse reflectance of the body mate-
rial, the Fresnel reflectance of the air-media interface, and the slope
surface roughness of the interface, by using their polychromatic
laser range sensor which can produce a pair of range and color
images. Their method could estimate more detailed reflectance
properties than the one developed by Ikeuchi and Sato [7]. How-
ever, their method still required uniform reflectance properties over
each object surface, and only partial object shape was recovered.

Kay and Caelli [9] introduced another method to use a range
image and 4 or 8 intensity images taken under different illumina-
tion conditions. By increasing the number of intensity images, they
estimated reflection function parameters locally for each image
pixel. Unlike the algorithm proposed by Sato and Ikeuchi, the
method can handle object surfaces with varying reflectance proper-
ties. However, it is reported that parameter estimation can be unsta-
ble, especially when the specular reflection component is not
observed strongly.

More recently, Sato and Ikeuchi developed a method to mea-
sure object surface shape and reflectance properties from a
sequence of range and color images [16]. The method has an advan-
tage over other methods in that it can handle objects with non-uni-
form reflectance properties. However, the method relies on region
segmentation on object surfaces, and each of the segmented regions
must have uniform reflectance properties. Therefore, the method
cannot be applied to highly textured objects.

In this paper, we propose a new method for modeling object
reflectance properties, as well as object shapes, from multiple range
and color images of real objects. Unlike previously proposed meth-
ods, our method can create complete object models, i.e., not partial
object shape, with non-uniform reflectance properties. First, the
object surface shape is reconstructed by merging multiple range
images of the object. By using the reconstructed object shape and a
sequence of color images of the object, parameters of a reflection
model are estimated in a robust manner. The key point of the pro-
posed method is that, first, the diffuse reflection components and
the specular reflection component are separated from the color
image sequence, and then, reflectance parameters of each reflection
component are estimated separately. Unlike previously reported
methods, this approach enables reliable estimation of surface
reflectance properties which are not uniform over the object sur-
face, and which include specularity as well as diffusely reflected

lights. We demonstrate the capability of our object modeling tech-
nique by synthesizing object images with realistic shading effects
under arbitrary illumination conditions.

This paper is organized as follows: Section 2 describes our
image acquisition system for obtaining a sequence of range and
color images of the object. Section 3 explains reconstruction of the
object surface shape from the range image sequence. Section 4
describes our method for estimating reflectance properties of the
object using the reconstructed object shape and the color image
sequence. Object images synthesized using the recovered object
shape and reflectance properties are shown in Section 5. Conclud-
ing remarks are presented in Section 6.

2 IMAGE ACQUISITION SYSTEM

The experimental setup for the image acquisition system
used in our experiments is illustrated in Figure 1. The object whose
shape and reflectance information is to be recovered is mounted on
the end of a robotic arm. The object used in our experiment is a
ceramic mug whose height is about . Using the system, a
sequence of range and color images of the object is obtained as the
object is rotated at a fixed angle step. Twelve range images and 120
color images were used in our experiment shown in this paper.

A range image is obtained using a light-stripe range finder
with a liquid crystal shutter and a color CCD video camera [14]. 3D
locations of points in the scene are computed at each image pixel
using optical triangulation. Each range-image pixel represents an

 location of a corresponding point on an object surface.
The same color camera is used for acquiring range images and
color images. Therefore, pixels of the range images and the color
images directly correspond.

The range finder is calibrated to produce a projection
matrix which represents the projection transformation between
the world coordinate system and the image coordinate system. The
location of the PUMA 560 manipulator with respect to the world
coordinate system is also found via calibration. Therefore, the
object location is given as a transformation matrix for
each digitized image.

A single incandescent lamp is used as a point light source. In
our experiments, the light source direction and the light source
color are measured by calibration. The gain and offset of outputs
from the video camera are adjusted so that the light source color
becomes .

Figure 1

Image acquisition system

100mm

X Y Z, ,()

3 4×
Π

4 4× T

R G B, ,() 1 1 1, ,()=

color camera

light stripe range finder

robotic arm

light source

object

Figure 2

Shape reconstruction by merging range images: (a) Input surface patches (4 out of 12 patches are shown), (b) Result of alignment,
(c) Obtained volumetric data (two cross sections are shown), (d) Generated triangular mesh of the object shape (3782 triangles)

3 SURFACE SHAPE MODELING

A sequence of range images of the object is used to construct
the object shape as a triangular mesh. Then, the number of triangles
used for the object shape model is reduced by simplifying the
object shape without losing its details for efficient storage and ren-
dering of the object.

One disadvantage of using the simplified object model is that
a polygonal normal computed from the simplified triangular mesh
model does not accurately approximate the real surface normal
even though the object shape is preserved reasonably well. Thus,
rather than using polygonal normals, we compute surface normals
at dense grid points within each triangle of the object surface mesh
by using the lowest level input, i.e., 3D points measured in range
images.

In Section 3.1, we describe reconstruction of a triangular
mesh model of the object from a sequence of range images. Estima-
tion of dense surface normals is explained in Section 3.2.

3.1 Shape modeling from range image
merging

For reconstructing object shapes as a triangular mesh model
from multiple range images, we used the volumetric method devel-
oped by Wheeler, Sato, and Ikeuchi [21]. The method consists of
the following four steps, each of which is briefly described in this
section.

1. Surface acquisition from each range image

The range finder in our image acquisition system cannot
measure the object surface itself. In other words, the range finder
can produce only images of 3D points on the object surface.
Because of this limitation, we need to somehow convert the mea-
sured 3D points into a triangular mesh which represents the object
surface shape. This is done by connecting two neighboring range
image pixels based on the assumption that those points are con-
nected by a locally smooth surface. If those two points are closer in
a 3D distance than some threshold, then we consider them to be
connected on the object surface.

In Figure 2 (a), 4 out of 12 input range images of the mug are
shown as triangular meshes.

2. Alignment of all range images

All of the range images are measured in the coordinate sys-
tem fixed with respect to the range finder system, and they are not
aligned to each other initially. Therefore, after we obtain the trian-
gular surface meshes from the range images, we need to transform
all of the meshes into a unique object coordinate system.

To align the range images, we use a transformation matrix
which represents the object location for each range image (Section
2). Suppose we select one of the range images as a key range image
to which all other range images are aligned. We refer to the trans-
formation matrix for the key range image as . Then, all
other range images can be transformed into the key range image’s
coordinate system by transforming all 3D points

as where is a
range image frame number.

3. Merging based on a volumetric representation

After all of the range images are converted into triangular
patches and aligned to a unique coordinate system, we merge them
using a volumetric representation. First, we consider imaginary 3D
volume grids around the aligned triangular patches. Then, in each
voxel,

3

 we store the value, , of the signed distance from the
center point of the voxel, , to the closest point on the object sur-
face. The sign indicates whether the point is outside, , or
inside, , the object surface, while indicates that

 lies on the surface of the object.

This technique has been applied to surface extraction by sev-
eral researchers [5], [3], [4]. The novel part of our technique is the
robust computation of the signed distance. Our technique computes
the signed distance by using a new algorithm called

the consensus
surface algorithm

 [21]. In the consensus surface algorithm, a quo-
rum of consensus of locally coherent observation of the object sur-
face is used to compute the signed distance correctly, which
eliminates many of the troublesome effects of noise and extraneous
surface observations in the input range images, for which previ-
ously developed methods are susceptible.

One drawback of using a volume grid for merging range
images is the amount of memory required for the volume grid,
which is and therefore quickly becomes prohibitively large
as the resolution increases. Curless and Levoy’s method [3] used

3.

voxel:

 volume element

(a) range image acquisition (b) alignment (c) merging (d) isosurface extraction

T

Tmerge

P X Y Z 1, , ,()= P′ TmergeT f
1–
P= f 1…n=

f x()
x

f x() 0>
f x() 0< f x() 0=

x

O n
3()

n

a run-length encoding to overcome this problem. In our technique,
an oct-tree structure [8] is used, and the required memory was
reduced to % for several examples reported in [21]. Further
study is needed to determine whether the use of oct-trees as in our
technique is more or less efficient than the run-length encoding in
Curless and Levoy’s method.

Figure 2 (c) shows two cross sections of the volumetric data
constructed from the input range images of the mug. A darker color
represents a shorter distance to the object surface, and a brighter
color represents a longer distance.

4. Isosurface extraction from volumetric grid

The volumetric data is then used to construct the object sur-
face as a triangular mesh. The marching cubes algorithm [10] con-
structs a triangular mesh by traversing zero crossings of the implicit
surface, , in the volume grid. Here, the marching cube
algorithm was modified so that it handles holes and missing data
correctly [21].

Figure 2 (d) shows the result of triangular mesh reconstruc-
tion. In this example, triangles were generated from the
volumetric data.

The marching cube algorithm generally produces a large
number of triangles whose sizes vary significantly. Thus, it is desir-
able to simplify the reconstructed object surface shape by reducing
the number of triangles. We used the mesh simplification method
developed by Hoppe et al. [6] for this purpose. In our experiment,
the total number of triangles was reduced from to (Fig-
ure 3).

Figure 3 Simplified shape model: The object shape model was
simplified from 3782 to 488 triangles.

3.2 Surface normal estimation

Polygonal normals computed from a triangular surface mesh
model can approximate real surface normals fairly well when the
object surface is relatively smooth and does not have high curvature
points. However, accuracy of polygonal normals becomes poor
when the object surface has high curvature points and the resolution
of the triangular surface mesh model is low, i.e., a smaller number
of triangles to represent the object shape.

This becomes a problem especially for the task of reflectance
parameter estimation. For estimating reflectance parameters at a
surface point, we need to know three directions at the surface point:
the viewing direction, the light source direction, and the surface
normal. As a result, with incorrectly estimated surface normals,
small highlights observed within each triangle cannot be analyzed
accurately, and therefore they cannot be reproduced in synthesized
images. For this reason, we compute surface normals at regular grid
points (points in our experiment) within each triangle

using the 3D points from the range images. The resolution of regu-
lar grid points should be changed depending on the size of each tri-
angle, so that the density of grid points becomes more or less
uniform over the object surface. The adaptive resolution of grid
points is yet to be implemented in our object modeling system.

Figure 4 Dense surface normal estimation

The surface normal at a grid point is determined from a
least squares best fitting plane to all neighboring 3D points whose
distances to the point are shorter than some threshold. This sur-
face normal estimation method has been used by other researchers
for other applications. Cromwell [2] used a similar method for
choosing the best direction for viewing a cloud of small particles,
e.g., molecules, in computer graphics. Hoppe et al. [5] used the sur-
face normal estimation method for surface reconstruction from a
cloud of 3D points.

The surface normal is computed as an eigen vector of the
covariance matrix of the neighboring 3D points; specifically, the
eigen vector associated with the eigenvalue of smallest magnitude
(Figure 5). The covariance matrix of 3D points ,
with centroid , is defined as

. (1)

The surface normals computed at regular grid points within
each triangle are then stored as a three-band surface normal image
which is later used for mapping dense surface normals to the trian-
gular mesh of the object shape. The mapped surface normals are
used both for reflectance parameter estimation and for rendering
color images of the object.

Figure 5

Surface normal estimation from input 3D points

4 SURFACE REFLECTANCE MODELING

After the object shape is reconstructed, we measure reflec-
tance properties of the object surface using the reconstructed shape
and the input color images. First, the two fundamental reflection
components (i.e., the diffuse and specular reflection components)

4 23–

f x() 0=

3782

3782 488

20 20×

grid points

surface normal image

Pg

Pg

n Xi Yi Zi, ,[] T

X Y Z, ,[] T

C

Xi X–()

Yi Y–()

Zi Z–()

Xi X–() Yi Y–() Zi Z–()
i 1=

n

∑=

principal axis of neighboring points

input 3D points

are separated from the input color images. Then, the parameters for
the two reflection components are estimated separately. Separation
of the two reflection components enables us to obtain a reliable esti-
mation of the specular reflection parameters. Also, the specular
reflection component (i.e., highlight) in the color images does not
affect estimated diffuse reflection parameters of the object surface.

In Section 4.1 we introduce the reflection model used in this
analysis. Then, in Section 4.2 we describe how to determine an
observed color sequence for a 3D point on the object surface from
the input color images. Using the observed color sequence, the
algorithm for separating the diffuse and specular reflection compo-
nents is explained in Section 4.3. We explain the measurement of
the diffuse reflection parameters in Section 4.4. Finally, we
describe the estimation of the specular reflection parameters in Sec-
tion 4.5.

4.1 Reflection model

A general reflection model is described in terms of three
reflection components, namely the diffuse lobe, the specular lobe,
and the specular spike [12]. In many computer vision and computer
graphics applications, reflection models are represented by linear
combinations of two of those reflection components: the diffuse
lobe component and the specular lobe component. The specular
spike component can be observed only from mirror-like smooth
surfaces where reflected light rays of the specular spike component
are concentrated in a specular direction. It is thus difficult to
observe the specular spike component from a coarsely sampled set
of viewing directions.

The diffuse lobe component and the specular lobe component
are normally called the diffuse reflection component and the
specular reflection component, respectively. This reflection model
was formally introduced by Shafer as the dichromatic reflection
model [17].

In our analysis, the Torrance-Sparrow model [19] is used for
representing the diffuse and specular reflection components. As
Figure 1 illustrates, the illumination and viewing directions are
fixed with respect to the world coordinate system. The reflection
model used in our analysis is given as

(2)

where is the angle between the surface normal and the light
source direction, is the angle between the surface normal and
the viewing direction, is the angle between the surface normal
and the bisector of the light source direction and the viewing direc-
tion, and are constants for the diffuse and specular
reflection components, and is the standard deviation of a facet
slope of the Torrance-Sparrow model.

This reflection model represents reflections which bounce
only once from the light source. Therefore, the reflection model is
valid only for convex objects, and it cannot represent
interreflections on concave object surfaces. However, we empiri-
cally determined that interreflection did not affect our analysis sig-
nificantly.

In this paper, we refer to , , and as the dif-
fuse reflection parameters, and , , , and as the
specular reflection parameters.

4.2 Mapping color images onto object
surface shape

For separating the diffuse and specular reflection components
and for estimating parameters of each reflection component, we
need to know a sequence of observed colors at each point on the
object surface as the object is rotated. In this section, we describe
how to obtain an observed color sequence of a surface point
(X,Y,Z) from the input color image sequence.

We represent world coordinates and image coordinates using
homogeneous coordinates. A point on the object surface with
Euclidean coordinates is expressed by a column vector

. An image pixel location is represented
by . As described in Section 2, the camera projec-
tion transformation is represented by a matrix , and the
object location is given by a object transformation matrix .
We denote the object transformation matrix for the input color
image frame by (). Thus, using the projection
matrix and the transformation matrix for the key range
image (Section 3.1), the projection of a 3D point on the object sur-
face in the color image frame is given as

(3)

where the last component of has to be normalized to give the
projected image location .

The observed color of the 3D point in the color image frame
 is given as the color intensity at the pixel location

. If the 3D point is not visible in the color image (i.e., the
point is facing away from the camera, or it is occluded), the
observed color for the 3D point is set to . By
repeating this procedure for all frames of the input color image
sequence, we get an observed color sequence for the 3D point on
the object surface.

Figure 6 shows the result of mapping the input color images
onto the reconstructed object surface shape.

4.3 Reflection component separation
from color image sequence

We now describe the algorithm for separating the two reflec-
tion components. This separation algorithm was originally intro-
duced for the case of a moving light source by Sato and Ikeuchi
[15]. In this paper, a similar algorithm is applied for the case of a
moving object.

Using three color bands, red, green, and blue, the coefficients
 and , in Equation (2), generalize to two linearly inde-

pendent vectors,

(4)

unless the colors of the two reflection components are accidentally
the same.

Im KD m, θicos KS m,
1

θrcos
--------------e

α2
2σ2⁄–

+= m R G B, ,=

θi
θr

α

KD m, KS m,
σ

KD R, KD G, KD B,
KS R, KS G, KS B, σ

X Y Z, ,()
P X Y Z 1, , ,[] T

= x y,()
p x y 1, ,[] T

=
3 4× Π

4 4× T

f T f
f 1…n=

Π Tmerge

f

pf ΠT f Tmerge
1–

P= f 1…n=()

pf
x y,()

f R G B, ,()
x y,()

R G B, ,() 0 0 0, ,()=

KD m, KS m,

K
˜ D KD R, KD G, KD B,

T
= K

˜ S KS R, KS G, KS B,
T

=

Figure 6 Color image mapping result: 6 out of 120 color images are shown here.

First, the color intensities in the R, G, and B channels from
input images of the object are measured for each point on the object
surface as described in Section 4.2. The three sequences of inten-
sity values are stored in the columns of an matrix . Con-
sidering the reflectance model (Equation (2)) and two color vectors
in Equation (4), the intensity values in the R, G, and B channels can
be represented as

(5)

where , and the two vectors
 and represent the intensity values of the diffuse and

specular reflection components with respect to the illuminating/
viewing directions , , and . The vectors and repre-
sent the diffuse and the specular reflection color vectors, respec-
tively.

Suppose we have an estimate of the matrix . Then, the two
reflection components represented by the matrix are obtained by
projecting the observed reflection stored in onto the two color
vectors and as

(6)

where is the pseudoinverse matrix of the color matrix
.

The derivation shown above is based on the assumption that
the matrix is known. In our experiments, the specular reflection
color vector is directly measured as the light source color by a
calibration procedure. Therefore, only the diffuse color vector
is unknown and needs to be determined.

From Equation (2), it can be seen that the distribution of the
specular reflection component is limited to a fixed angle, depending

on . Thus, if the angle is sufficiently large at a point on the
object surface, an observed color at the point should represent the
color of the diffuse reflection component. The angles , , and

 are computed using the object transformation matrix
() and the camera projection matrix as follows. The
light source location is acquired via calibration, and the camera
projection center can be computed from the projection matrix .
Also, the surface normal at the surface point of the object model for
the color image frame can be computed by rotating the surface
normal at the surface point by the object transformation matrix .
Using the light source direction, the viewing direction and the sur-
face normal, , , and are computed.

Once we get the matrix , the matrix can be calculated
from Equation (6). Each of the diffuse and specular reflection com-
ponents is given as

. (7)

Figure 7 (a) illustrates a typical observed color sequence with
specularity. The separation algorithm was applied to the observed
color sequence, and the separation result is shown in Figure 7 (b).

Figure 7 (a) observed color sequence and (b) separation result

Another technique for separating the diffuse and specular
reflection components is the use of polarization filters [13] [22].
The technique could be used for separating reflection components
instead of the one described in this section. However, the use of
polarization generally requires more samplings of images by using
a more complex image acquisition system. Thus, we have not
explored this direction in our study.

4.4 Diffuse reflection parameter estimation

Using the diffuse reflection component separated from the
observed color sequence, we now can estimate the diffuse reflec-

input color image sequence

n 3× Μ

M M
˜ R M

˜ G M
˜ B

=

θi1cos E θr1 α1,()

θi2cos E θr2 α2,()

⋅ ⋅
⋅ ⋅
θincos E θrn αn,()

KD R, KD G, KD B,

KS R, KS G, KS B,
=

G
˜ D G

˜ S

K
˜ D

T

K
˜ S

T
=

GK≡

E θr α,() α2
2σ2⁄–()exp θrcos⁄=

G
˜ D G

˜ S

θi θr α K
˜ D K

˜ S

K
G

M
K
˜ D K

˜ S

G MK
+

=

K
+

3 2×
K

K
K
˜ S

K
˜ D

σ α

α θ i
θr T f
f 1…n= Π

Π

f
T f

α θ i θr

K G

MD G
˜ DK

˜ D
T

= MS G
˜ SK

˜ S
T

=

55 65 75 85 95 105
image frame

0.0

50.0

100.0

150.0

in
te

ns
ity

red
green
blue

55 65 75 85 95 105
image frame

0.0

50.0

100.0

150.0

in
te

ns
ity

(a) (b)

diffuse red
diffuse green
diffuse blue
specular red

specular blue
specular green

tion parameters (, , and) without undesirable
effects from the specular reflection component (i.e., highlights).
Using the angle computed as stated in the previous section, the
diffuse reflection parameters are estimated by fitting the reflection
model (the first term of Equation (2)) to the separated diffuse reflec-
tion component. Hence, the estimated diffuse reflection parameters
are not affected by the particular shadings in the observed images,
e.g., the effect of the light source can be factored out. In other
words, the diffuse reflection parameters can be estimated correctly
even if the object appears dark or bright in the color images.

The diffuse reflection parameters are estimated at regular grid
points within each triangle just as the surface normals in Section
3.2 are estimated. The resolution of the grid of points is in
our experiment, while it is for the surface normal estima-
tion. The higher resolution is necessary to capture details of the dif-
fuse reflection texture on the object surface. The resolution for the
diffuse reflection parameter estimation should be determined by the
average number of pixels which fall onto one triangle of the object
shape model in the observed color images. Resolution higher than
the average number does not capture any more information than
that in the observed color images, but it increases the required stor-
age for the diffuse reflection parameters unnecessarily. Figure 8
shows the result of the diffuse reflection parameter estimation
where the estimated parameters are visualized as surface texture on
the mug.

Figure 8 Estimated diffuse reflection parameters

4.5 Specular reflection parameter estimation

As in the diffuse reflection parameter estimation, the specular
reflection parameters (, , , and) are also com-
puted using the angle and the angle . However, there is a sig-
nificant difference between estimation of the diffuse and specular
reflection parameters. The diffuse reflection parameters can be esti-
mated as long as the object surface is illuminated and viewed from
the camera. On the other hand, the specular reflection component is
usually observed only from a limited range of viewing directions.
For a finite set of views, the specular reflection component will only
be observed over a small portion of the object surface in the input
color image sequence. For much of the object surface, we cannot
estimate the specular reflection parameters. Even if the specular
reflection component is observed, the parameter estimation can
become unreliable if the specular reflection component is not
observed strongly, or if the separation of the two reflection compo-
nents is not performed well.

For the above reasons, we decided to use a slightly different
strategy for estimating the specular reflection parameters. Since the
specular reflection parameters may only be estimated sparsely over
the object surface, we use interpolation to infer the specular reflec-
tion parameters over the entire surface.

In Section 4.5.1, we describe how to select object surface
points which are suitable for estimating the specular reflection
parameters. Interpolation of the estimated specular reflection
parameters on the object surface is explained in Section 4.5.2.

4.5.1 Selection of Surface Points for Parameter
Estimation

For the specular refection parameters to be estimated reliably,
the following three conditions are necessary at a point on the object
surface. All of the three conditions contribute to reliable separation
of the diffuse and specular reflection components.

1. The two reflection components must be reliably separated.
Because the diffuse and specular reflection components are
separated using the difference of the colors of the two compo-
nents (Section 4.3), these color vectors should differ as much
as possible. This can be examined by saturation of the diffuse
color (Figure 9). Since the light source color is generally
close to white (saturation = 0), if the diffuse color has a high
saturation value, the diffuse and specular reflection colors will
be different.

Figure 9 Diffuse saturation shown in the RGB color space

2. The magnitude of the specular reflection component is as
large as possible.

3. The magnitude of the diffuse reflection component is as large
as possible. Although this condition might seem to be unnec-
essary, we empirically found that the specular reflection
parameters can be obtained more reliably if this condition is
satisfied.

Figure 10 Selected vertices for specular parameter estimation:
100 out of 266 vertices were selected.

An evaluation measure: v = diffuse saturation * max specular
intensity * max diffuse intensity is used to represent how well these
three conditions are satisfied. In our experiments, we used the ver-
tices of the triangular surface mesh as candidates for parameter
estimation. Then, vertices with the largest values were chosen
according to our evaluation measurement . Figure 10 illustrates
100 selected vertices for specular parameter estimation out of 266

KD R, KD G, KD B,

θi

80 80×
20 20×

KS R, KS G, KS B, σ
θr α

R

G

B

specular color vector

diffuse color vector

1

1

1
saturation

100
v

vertices. Note that the use of the triangular vertices as initial candi-
dates for specular parameter estimation is not essential in our
method. In practice, we found that this choice was sufficient to find
suitable points for specular parameter estimation.

4.5.2 Interpolation of Estimated Specular Parameters

In our experiment, the camera output is calibrated so that the
specular reflection color (i.e., the light source color) has the same
value from the three color channels (Section 2). For instance, the
separated specular reflection component shown in Figure 7 (b) has
more or less the same output from the three color channels. There-
fore, only one color band was used to estimate the specular reflec-
tion parameters (and) in our experiment.

After the specular reflection parameters and were esti-
mated at the 100 selected vertices, the estimated values were lin-
early interpolated based on a distance on the object surface, so that
the specular reflection parameters were obtained at regular grid
points within each triangle of the object surface mesh. The resolu-
tion of the grid points was in our experiment, while the
resolution was for the diffuse reflection parameter estima-
tion. In general, specular reflectance does not change so rapidly as
diffuse reflectance, i.e., diffuse texture on the object surface. There-
fore, the resolution of was enough to capture the specular
reflectance of the mug.

Interpolated values of the two specular reflection parameters
are shown in Figure 11. The obtained specular reflection parame-
ters were then stored in two specular reflection parameter images (a

 image and a image) just as estimated surface normals were
stored in the surface normal image.

Figure 11 Interpolated and

5 IMAGE SYNTHESIS

Using the reconstructed object shape (Section 3.1), the sur-
face normal image (Section 3.2), the diffuse reflection parameter
image (Section 4.4), the specular reflection parameter image (Sec-
tion 4.5), and the reflection model (Equation (2)), we can synthe-
size color object images under arbitrary illumination/viewing
conditions.

Figure 12 shows synthesized images of the object with two
point light sources. Note that the images represent highlights on the
object surface naturally. For comparing synthesized images with
the input color images of the object, the object model was rendered
using the same illumination and viewing directions as some of the
input color images. Figure 13 shows two frames of the input color
image sequence as well as two synthesized images that were gener-
ated using the same illuminating/viewing condition as the input
color images. It can be seen that the synthesized images closely
resemble the corresponding real images. In particular, highlights,

which generally are a very important cue of surface material,
appear on the side and the handle of the mug naturally in the syn-
thesized images.

However, we can see that the synthesized images are slightly
more blurred than the original color images, e.g., the eye of the
painted fish in frame 50. That comes from slight error in the mea-
sured object transformation matrix (Section 2) due to imperfect
calibration of the robotic arm. Because of the error in the measured
transformation matrix , the projected input color images (Section
4.2) were not perfectly aligned on the reconstructed object surface.
As a result, the estimated diffuse reflection parameters were
slightly blurred. This blurring effect can be avoided if, after a color
image is projected onto the object surface, the color image is
aligned with previously projected images by a local search on the
surface. However, we have not yet tested this idea in our implemen-
tation.

6 CONCLUSION

We have explored automatic generation of photorealistic
object models from observation. Achieving photorealism in synthe-
sized object images requires accurate modeling of shape and reflec-
tance properties of the object. In this paper, we have presented a
new paradigm for acquiring object shape and reflectance parame-
ters from range and color images.

The object surface shape is reconstructed by merging multi-
ple range images of the object. By using the reconstructed object
shape and multiple color images of the object, parameters of the
Torrance-Sparrow reflection model are estimated. For estimating
reflectance parameters of the object robustly, our method is based
on separation of the diffuse and specular reflection components
from a color image sequence. Using separated reflection compo-
nents, reflection model parameters for each of the two components
were estimated separately. In particular, the specular reflection
parameters were successfully obtained by identifying suitable sur-
face points for estimation and by interpolating estimated parame-
ters over the object surface.

Our experiments have shown that our object modeling
method can be effectively used for synthesizing realistic object
images under arbitrary illumination and viewing conditions.

Acknowledgment: The authors thank Marie Elm for her valu-
able comments of the draft of the paper.

REFERENCES

[1] R. Baribeau, M. Rioux, and G. Godin, “Color reflectance modeling
using a polychromatic laser sensor,” IEEE Trans. on Pattern Analysis
and Machine Intelligence, vol. 14, no. 2, pp. 263-269, 1992.

[2] R. L. Cromwell, “Efficient eigenvalues for visualization,” in P. S.
Heckbert, editor, Graphics Gems IV, Academic Press, San Diego,
1994.

[3] B. Curless and M. Levoy, “A volumetric method for building complex
models from range images,” Computer Graphics (SIGGRAPH ‘96
Proceedings), pp. 303-312, 1996.

[4] A. Hilton, J. Stoddart, J. Illingworth, and T. Windeatt, “Reliable sur-
face reconstruction from multiple range images,” Proceedings of Euro-
pean Conference on Computer Vision ‘96, pp. 117-126, 1996.

[5] H. Hoppe, T. DeRose, T. Duchamp, J. McDonald, and W. Stuetzle,

KS σ

KS σ

20 20×
80 80×

20 20×

KS σ

KS σ

T

T

“Surface reconstruction from unorganized points,” Computer Graph-
ics (SIGGRAPH ‘92 Proceedings), pp. 71-78, 1992.

[6] H. Hoppe, T. DeRose, T. Duchamp, J. McDonald, and W. Stuetzle,
“Mesh Optimization,” Computer Graphics (SIGGRAPH ‘93 Proceed-
ings), pp. 19-26, 1993.

[7] K. Ikeuchi and K. Sato, “Determining reflectance properties of an
object using range and brightness images,” IEEE Trans. on Pattern
Analysis and Machine Intelligence, vol. 13, no. 11, pp. 1139-1153,
1991.

[8] C. L. Jackins and S. L. Tanimoto, “Oct-trees and their use in represent-
ing three-dimensional objects,” Computer Graphics Image Processing,
vol. 14, no. 3, pp. 249-270, 1980.

[9] G. Kay and T. Caelli, “Inverting an illumination model from range and
intensity maps,” CVGIP: Image Understanding, vol. 59, pp. 183-201,
1994.

[10]W. E. Lorensen and H. E. Cline, “Marching cubes: a high resolution
3D surface construction algorithm,” Computer Graphics (SIGGRAPH
‘87 Proceedings), vol. 21, no. 4, pp. 163-169, 1987.

[11] J. Lu and J. Little, “Reflectance function estimation and shape recov-
ery from image sequence of a rotating object,” Proceedings of Interna-
tional Conference on Computer Vision, pp. 80-86, June 1995.

[12]S. K. Nayar, K. Ikeuchi, and T. Kanade, “Surface reflection: physical
and geometrical perspectives,” IEEE Trans. on Pattern Analysis and
Machine Intelligence, vol. 13, no. 7, pp. 611-634, 1991.

[13]S. K. Nayar, X. Fang, and T. E. Boult, “Removal of specularities using
color and polarization,” Proceedings of Computer Vision and Pattern

Recognition ‘93, pp. 583-590, New York City, NY, June 1993.

[14]K. Sato, H. Yamamoto, and S. Inokuchi, “Range imaging system uti-
lizing nematic liquid crystal mask,” Proceedings of International Con-
ference on Computer Vision, pp. 657-661, 1987.

[15]Y. Sato and K. Ikeuchi, “Temporal-color space analysis of reflection,”
Journal of Optical Society of America A, vol. 11, no. 11, pp. 2990-
3002, November 1994.

[16]Y. Sato and K. Ikeuchi, “Reflectance analysis for 3D computer graph-
ics model generation,” Graphical Models and Image Processing, vol.
58, no. 5, pp. 437-451, September 1996.

[17]S. Shafer, “Using color to separate reflection components,” COLOR
Research and Application, vol. 10, no. 4, pp. 210-218, 1985.

[18]R. Szelski at Micro Soft Co., personal communication.

[19]K. E. Torrance and E. M. Sparrow, “Theory for off-specular reflection
from roughened surface,” Journal of Optical Society of America, vol.
57, pp. 1105-1114, 1967.

[20]G. J. Ward, “Measuring and modeling anisotropic reflection,” Com-
puter Graphics (SIGGRAPH 92Proceedings), vol. 26, no. 2, pp. 265-
272, 1992.

[21]M. D. Wheeler, Y. Sato, and K. Ikeuchi, “Consensus surfaces for mod-
eling 3D objects from multiple range images,” DARPA Image
Understanding Workshop, 1997.

[22]L. B. Wolff, T. E. Boult, “Constraining object features using a polar-
ization reflectance model,” IEEE Trans. on Pattern Analysis and
Machine Intelligence, vol. 13, no. 6, pp. 635-657, 1991.

Figure 12 Synthesized object images

Figure 13 Comparison of input color images and synthesized images

frame 50input synthesized frame 80input synthesized

Acquisition and Visualization of
Surface Light Fields

SIGGRAPH 2001 Course 46 Notes

Session 8:

Hardware-Accelerated Rendering of Surface Light Fields

Radek Grzeszczuk
Intel Corporation

Intel Corporation 1

Light Field Mapping:

Hardware-accelerated Rendering of

Surface Light Fields

Light Field Mapping:

Hardware-accelerated Rendering of

Surface Light Fields

Microprocessor Research Labs

Intel Corporation

Microprocessor Research Labs

Intel Corporation

SIGGRAPH 2001 Course on

Acquisition and Visualization of

Surface Light Fields

Radek GrzeszczukRadek Grzeszczuk

Collaborations

Wei-Chao Chen
University of North Carolina at Chapel Hill

Wei-Chao Chen
University of North Carolina at Chapel Hill

Jean-Yves Bouguet

Intel Corporation

Jean-Yves Bouguet

Intel Corporation

Intel Corporation 2

Talk Overview

• Introduction

• Acquisition and resampling of data

• Surface light field approximation

• Light field mapping

• Compression of light field maps

• Introduction

• Acquisition and resampling of data

• Surface light field approximation

• Light field mapping

• Compression of light field maps

Definition of

Surface Light Field

• Describes radiance of every point on the surface

in every viewing direction

– Parameters (r, s) describe surface location

– Parameters (�, �) describe viewing direction

• Describes radiance of every point on the surface

in every viewing direction

– Parameters (r, s) describe surface location

– Parameters (�, �) describe viewing direction

),,,(),,(��srfBGRI �),,,(),,(��srfBGRI �

Intel Corporation 3

Applications of

Surface Light Fields

• 3D Photography

– preserve photorealism of scanned objects

– surface details represented using images

• Realistic computer games

– allow for interactive visualization of physically

realistic synthetic and real environments

– can be easily combined with traditional CG objects

and lighting models

• 3D Photography

– preserve photorealism of scanned objects

– surface details represented using images

• Realistic computer games

– allow for interactive visualization of physically

realistic synthetic and real environments

– can be easily combined with traditional CG objects

and lighting models

Surface Light Fields of

Scanned Objects - Examples

Intel Corporation 4

Surface Light Fields of

Synthetic Environments - Examples

Overview of

Light Field Mapping

• Partitions SLF across surface primitives P
i

• Partitions SLF across surface primitives P
i

),(),(),,,(
1

���� iii
P

k

K

k

P

k

P
hsrgsrf �

�

�),(),(),,,(
1

���� iii
P

k

K

k

P

k

P
hsrgsrf �

�

�

),,,(),(),,,(���� srfsrsrf ii
PP

��),,,(),(),,,(���� srfsrsrf ii
PP

��

• Approximates SLF for each P
i
 individually as• Approximates SLF for each P
i
 individually as

• Functions g
k
 and h

k
 are stored as 2D texture maps

and called light field maps

• Functions g
k
 and h

k
 are stored as 2D texture maps

and called light field maps

Intel Corporation 5

Overview of

Light Field Mapping

• Approximation produces compact and accurate
representation (100:1 compression)

• Light field maps can be further compressed
(additional 100:1 compression)

• Representation ideal for hardware-acceleration

– Rendering routine extremely simple

– Uses texture mapping and blending only

• Approximation produces compact and accurate
representation (100:1 compression)

• Light field maps can be further compressed
(additional 100:1 compression)

• Representation ideal for hardware-acceleration

– Rendering routine extremely simple

– Uses texture mapping and blending only

Introductory Video

Intel Corporation 6

Talk Overview

• Introduction

• Acquisition and resampling of data

• Surface light field approximation

• Light field mapping

• Compression of light field maps

• Introduction

• Acquisition and resampling of data

• Surface light field approximation

• Light field mapping

• Compression of light field maps

Acquisition of

Surface Light Field Data

• Physical objects

– Geometry scanned with structured light system

– 200-400 images captured with hand held camera

– images registered to geometry

• Synthetic objects and scenes

– Geometry is given; no need for reconstruction

– Radiance data obtained from synthetically rendered

images

• Physical objects

– Geometry scanned with structured light system

– 200-400 images captured with hand held camera

– images registered to geometry

• Synthetic objects and scenes

– Geometry is given; no need for reconstruction

– Radiance data obtained from synthetically rendered

images

Intel Corporation 7

Visibility Computation and

Data Resampling

• Visibility computation determines un-occluded

views for each triangle

• Resampling consists of two steps:

• Normalization of texture sizes

– Each triangle view must have same size

• Resampling of viewing directions

– Regular sampling of viewing directions required for

proper decomposition and rendering

• Visibility computation determines un-occluded

views for each triangle

• Resampling consists of two steps:

• Normalization of texture sizes

– Each triangle view must have same size

• Resampling of viewing directions

– Regular sampling of viewing directions required for

proper decomposition and rendering

Resampling Step 1:

Normalization of Texture Sizes

• Normalizes number of samples representing each

view of triangle �
i

• Normalizes number of samples representing each

view of triangle �
i

][
21

i

i

iii

V

����
� IIII �

][
21

i

i

iii

V

����
� IIII �

1st view1st view 2nd view2nd view V
i
-th viewV
i
-th view

• Each matrix row represents all visible views of

one surface sample

• Resampling done with texture mapping hardware

• Each matrix row represents all visible views of

one surface sample

• Resampling done with texture mapping hardware

Intel Corporation 8

�
�

�

�
�

�

�

��
iI

�
�

�

�
�

�

�

��
iI

vv

nn

������ ������� �� ������ ������� ��

Resampling Step 1:

Normalization of Texture Sizes

Normalized

Textures

Normalized

Textures

11

22

NN

11 22 V
i

V
i

Initial viewsInitial views

All views for

texture sample n

All views for

texture sample n

texture sample n

shown in red

texture sample n

shown in red

Approximation of

through SVD

��
����
][

,1,12,11,1
i

i

iii

Vv
hhhh ��

��
����
][

,1,12,11,1
i

i

iii

Vv
hhhh ��

�
�

�

�
�

�

�

��
iI

�
�

�

�
�

�

�

��
iI ��

����
][

,2,22,21,2
i

i

iii

Vv
hhhh ��

��
����

][
,2,22,21,2
i

i

iii

Vv
hhhh ��

][
,,2,1,
i

i

iii

Vkvkkk
hhhh
����

� ��
][

,,2,1,
i

i

iii

Vkvkkk
hhhh
����

� ��

�� ��

Principal viewsPrincipal views

i
�
I

View-dependent multipliersView-dependent multipliers

• Eigen-texture approach proposed in [Nishino99]• Eigen-texture approach proposed in [Nishino99]

Intel Corporation 9

Image Synthesis using

Approximation of

��
�
i

v
h

,1
��

�
i

v
h

,1

�
�

�

�
�

�

�

��
i

v
I

�
�

�

�
�

�

�

��
i

v
I

�� ��

• Synthesis of original views is straight forward

• Synthesis of novel views is difficult

• Synthesis of original views is straight forward

• Synthesis of novel views is difficult

��
�
i

v
h

,2
��

�
i

v
h

,2

i

vk
h
�

�
,

i

vk
h
�

�
,

i
�
I

Comments on

Eigen-texture Approach

• Synthesis of novel views requires interpolation of

view-dependent multipliers

– interpolation needs to be constantly recomputed

– requires blending of neighboring views - expensive

– per sample interpolation not supported - artifacts

• Assumes constant viewing angle per triangle

– will not synthesis correct views of the object,

especially close-up views

• Results in discontinuities across triangles

• Synthesis of novel views requires interpolation of

view-dependent multipliers

– interpolation needs to be constantly recomputed

– requires blending of neighboring views - expensive

– per sample interpolation not supported - artifacts

• Assumes constant viewing angle per triangle

– will not synthesis correct views of the object,

especially close-up views

• Results in discontinuities across triangles

Intel Corporation 10

Why Resample

Viewing Directions?

• Simplifies synthesis of novel views

• Enables per sample interpolation of viewing

directions when rendering triangle

• Suitable for hardware-accelerated implementation

• Approximation of resampled SLF results in

minimal root mean square error

• What viewing direction parameterization is best

for resampling?

• Simplifies synthesis of novel views

• Enables per sample interpolation of viewing

directions when rendering triangle

• Suitable for hardware-accelerated implementation

• Approximation of resampled SLF results in

minimal root mean square error

• What viewing direction parameterization is best

for resampling?

Parameterization of

Viewing Directions

dd

),arccos(zd��),arccos(zd��

),/arctan(ydxd��),/arctan(ydxd��

xx

yy

]100[�z]100[�z

]010[,]001[�� yx]010[,]001[�� yx

zz

• Parameterization of d using spherical coordinates
is not suitable for hardware-acceleration

• Parameterization of d using spherical coordinates
is not suitable for hardware-acceleration

��

��

Intel Corporation 11

Parameterization of

Viewing Directions

xx

dd

yy

,2/)1(�� xdx ,2/)1(�� xdx

,2/)1(�� ydy ,2/)1(�� ydy

xx

yy

]010[�y]010[�y

zz

• Orthographic projection of d on xy-plane is ideal
for hardware and produces good results

• Orthographic projection of d on xy-plane is ideal
for hardware and produces good results

]001[�x]001[�x

Resampling Step 2:

Viewing Directions

• compute Delaunay triangulation of original views

• compute regular grid of views by blending original views

• project viewing directions for visible triangle views d
i

(0,0)

(1,1)

(1,0)

(0,1)

(x
i
,y

i
)

Intel Corporation 12

Resampling Step 2:

Viewing Directions

• Radiance data after resampling of texture sizes• Radiance data after resampling of texture sizes

][
21

i

i

iii

V

����
� IIII �

][
21

i

i

iii

V

����
� IIII �

iN
VNiiii

���
����

,][
21

FFFF � iN
VNiiii

���
����

,][
21

FFFF �

• N views uniformly sample parameters � and �• N views uniformly sample parameters � and �

• Radiance data after resampling of texture sizes

and viewing directions

• Radiance data after resampling of texture sizes

and viewing directions

�
�

�

�
�

�

�

��
iI

�
�

�

�
�

�

�

��
iI

vv

nn

������ ������� �� ������ ������� ��

Resampling Step 1:

Normalization of Texture Sizes

Normalized

Textures

Normalized

Textures

11

22

NN

11 22 V
i

V
i

Initial viewsInitial views

All views for

texture sample n

All views for

texture sample n

texture sample n

shown in red

texture sample n

shown in red

Intel Corporation 13

������ ������� �� ������ ������� ��

Resampling Step 2:

Viewing Directions

Resampled viewing anglesResampled viewing angles

nn

11

22

MM

11 22 NN

texture sample m shown in redtexture sample m shown in red

Normalized

Textures

Normalized

Textures

mm

view n shown in orangeview n shown in orange

�
�

�

�
�

�

�

��
iF

�
�

�

�
�

�

�

��
iF

Talk Overview

• Introduction

• Acquisition and resampling of data

• Surface light field approximation

• Light field mapping

• Compression of light field maps

• Introduction

• Acquisition and resampling of data

• Surface light field approximation

• Light field mapping

• Compression of light field maps

Intel Corporation 14

Overview of Surface Light

Field Approximation

• Partition surface light field across P elementary surface

primitives P
i

• Partition surface light field across P elementary surface

primitives P
i

),,,(qqpp

P
srf i ��),,,(qqpp

P
srf i ��

][
21

iiii
P

N

PPP
fffF ��][

21

iiii
P

N

PPP
fffF ��

• Rearrange 4-dimensional into M x N matrix• Rearrange 4-dimensional into M x N matrix

�
�

�

P

i

P
srfsrf i

1

),,,(),,,(���� �
�

�

P

i

P
srfsrf i

1

),,,(),,,(����

• Consider uniformly resampled surface light field for

surface element P
i
 (M samples, N views)

• Consider uniformly resampled surface light field for

surface element P
i
 (M samples, N views)

i
P

f i
P

f

Overview of Surface Light

Field Approximation

• Decompose through SVD• Decompose through SVD

��
��

��

N

k

kkkk

N

k

k

P
i

1

''

1

vuvuF � ��
��

��

N

k

kkkk

N

k

k

P
i

1

''

1

vuvuF �

• Rearrange vectors into 2D textures• Rearrange vectors into 2D textures),(''

kk
vu),(''

kk
vu

),(),(),,,(
1

qq

P

kpp

K

k

P

kqqpp

P
iii hsrgsrf ���� �

�

�),(),(),,,(
1

qq

P

kpp

K

k

P

kqqpp

P
iii hsrgsrf ���� �

�

�

• Truncate the sum after K terms• Truncate the sum after K terms

i
P

F
i
P

F

Intel Corporation 15

�� ��

Approximation of

through SVD

�
�

�

�
�

�

�

��
iF

�
�

�

�
�

�

�

��
iF

�� ��

Surface mapsSurface maps

i
�

F

View mapsView maps

�� ��

��

1st approximation term1st approximation term

2nd approximation term2nd approximation term

kth approximation termkth approximation term

• 1 approximation term = 1 surface map + 1 view map• 1 approximation term = 1 surface map + 1 view map

Triangle-centered

Approximation

• Partition surface light field across triangles• Partition surface light field across triangles

),,,(),(),,,(���� srfsrsrf ii
��

��),,,(),(),,,(���� srfsrsrf ii
��

��

�
�
�

�

�
���

i

i

outside

inside
sri

0

1
),(

�
�
�

�

�
���

i

i

outside

inside
sri

0

1
),(i

�i
�

Triangle surface light fieldTriangle surface light field

y

x

z

• Define local reference frame for each triangle

• Convert to in local reference frame of �i

• Define local reference frame for each triangle

• Convert to in local reference frame of �i

),,,(),,,(���� srfsrf iiii
����

�),,,(),,,(���� srfsrf iiii
����

�

),(ii
��

��),(ii
��

��),(��),(��

Intel Corporation 16

Triangle-centered

Approximation

• Decompose each triangle light field
independently

• Decompose each triangle light field
independently

),(),(),,,(
1

qqkpp

N

k

kqqpp
iii hsrgsrf ����

�

�

��

��),(),(),,,(
1

qqkpp

N

k

kqqpp
iii hsrgsrf ����

�

�

��

��

• Truncate sum to get optimal root mean square
approximation (K<<N)

• Truncate sum to get optimal root mean square
approximation (K<<N)

),(),(),,,(
1

qqkpp

K

k

kqqpp
iii hsrgsrf ����

�

�

��

��),(),(),,,(
1

qqkpp

K

k

kqqpp
iii hsrgsrf ����

�

�

��

��

• Triangle-centered approximation is compact but
introduces discontinuities at the edges

• Triangle-centered approximation is compact but
introduces discontinuities at the edges

Triangle-centered

Approximation Example

Intel Corporation 17

Vertex-centered

Approximation
• Partition SLF across triangle rings around each vertex• Partition SLF across triangle rings around each vertex

),,,(),(),,,(���� srfsrsrf jj vv

��),,,(),(),,,(���� srfsrsrf jj vv

��

�
�
� ��

��
ringoutside

aringinsidea
srjv

0

10,
),(

�
�
� ��

��
ringoutside

aringinsidea
srjv

0

10,
),(

jvj
v

Vertex surface light fieldVertex surface light field

• Define local reference frame for each vertex vj

• Convert to in local reference frame of vj

• Define local reference frame for each vertex vj

• Convert to in local reference frame of vj

),,,(),,,(���� srfsrf jjjj vvvv

�),,,(),,,(���� srfsrf jjjj vvvv

�

),(jj vv

��),(jj vv

��),(��),(��

y

x

z

Hat functionsHat functions

Partitioning using

Hat Functions

�
v
1

�
v

�

1

i

� i

v
1

v
2

v
3

�
v

�

2

i

�
v
2

� i

v
1

v
2

v
3

�
v

�

3

i

�
v
3

� i

v
1

v
2

v
3

�������������
v
1

v
2

v
3

�������������������
v

�

1

i

v

�

2

i

v

�

3

i

� i

v
1

v
3

v
2

Intel Corporation 18

Vertex-centered

Approximation

• Decompose each vertex light field independently• Decompose each vertex light field independently

• Truncate sum to get optimal root mean square
approximation (K<<N)

• Truncate sum to get optimal root mean square
approximation (K<<N)

• Requires more data and rendering passes than triangle-
centered approximation

• Removes discontinuities at the edges of triangles

• Requires more data and rendering passes than triangle-
centered approximation

• Removes discontinuities at the edges of triangles

),(),(),,,(
1

qq

v

kpp

N

k

v

kqqpp

v jjj hsrgsrf ���� �
�

�),(),(),,,(
1

qq

v

kpp

N

k

v

kqqpp

v jjj hsrgsrf ���� �
�

�

),(),(),,,(
1

qq

v

kpp

K

k

v

kqqpp

v jjj hsrgsrf ���� �
�

�),(),(),,,(
1

qq

v

kpp

K

k

v

kqqpp

v jjj hsrgsrf ���� �
�

�

Vertex-centered

Approximation Example

Intel Corporation 19

Talk Overview

• Introduction

• Acquisition and resampling of data

• Surface light field approximation

• Light field mapping

• Compression of light field maps

• Introduction

• Acquisition and resampling of data

• Surface light field approximation

• Light field mapping

• Compression of light field maps

Rendering Algorithm

Triangle-centered Approximation

• For each triangle �k :

• For each approximation term k :

– compute view-dependent texture coordinates in

local reference frame of triangle

– texture map �k�using surface map

– texture map �k using view map

– perform pixel-by-pixel multiplication of 2 images

• For each triangle �k :

• For each approximation term k :

– compute view-dependent texture coordinates in

local reference frame of triangle

– texture map �k�using surface map

– texture map �k using view map

– perform pixel-by-pixel multiplication of 2 images

i

k
G

�i

k
G

�

i

k
H

�i

k
H

�

Intel Corporation 20

Computation of

Texture Coordinates

• Surface map coordinates are fixed, view map coordinates

change depend on the viewing direction

• Computed in local reference frame of triangle

• Surface map coordinates are fixed, view map coordinates

change depend on the viewing direction

• Computed in local reference frame of triangle

v
1

x
y

z

v
3

d
1

view map texture Hk

�

d
2

�

d
3

�

�

v
2

surface map texture G
k

�

(s ,t)
1 1

� �
(x ,y)

1 1

� �

(s ,t)
2 2

� �

(s ,t)
3 3

� �

(x ,y)
2 2

� � (x ,y)
3 3

� �

�� ��

Image Synthesis using Triangle-

centered Approximation of

�
�

�

�
�

�

�

��
iF

�
�

�

�
�

�

�

��
iF

�� ��

Surface mapsSurface maps View mapsView maps

�� ��

��

1st approximation term1st approximation term

2nd approximation term2nd approximation term

kth approximation termkth approximation term

i
�

F

Intel Corporation 21

Rendering Algorithm

Vertex-centered Approximation

• For each triangle �k :

• For each approximation term k :

• For each vertex vj in (v1, v2, v3) :

– compute view-dependent texture coordinates in

local reference frame of vertex vj

– texture map �k�using surface map

– texture map �k using view map

– perform pixel-by-pixel multiplication of 2 images

• For each triangle �k :

• For each approximation term k :

• For each vertex vj in (v1, v2, v3) :

– compute view-dependent texture coordinates in

local reference frame of vertex vj

– texture map �k�using surface map

– texture map �k using view map

– perform pixel-by-pixel multiplication of 2 images

jv

k
G

jv

k
G

jv

k
H

jv

k
H

Computation of Texture

Coordinates (vertex 1)

x
1

y
1

z1

(x ,y)
3 3

v
1

v
1

(x ,y)
2 2

v
1

v
1(x ,y)

1 1

v
1

v
1

(s ,t)
1 1

v
1

v
1

view map texture Hk

v
1surface map texture Gk

v
1

(s ,t)
2 2

v
1

v
1

(s ,t)
3 3

v
1

v
1

v
1

v
3

v
2

d
2

v
1

d
3

v
1

d
1

v
1

• Computed in local reference frame of vertex v1

• Applied to view map

• Blending factored into the surface map

• Computed in local reference frame of vertex v1

• Applied to view map

• Blending factored into the surface map

1
v

k
H

1
v

k
H

1
v

k
G

1
v

k
G

Intel Corporation 22

Computation of Texture

Coordinates (vertex 2)

• Computed in local reference frame of vertex v2

• Applied to view map

• Blending factored into the surface map

• Computed in local reference frame of vertex v2

• Applied to view map

• Blending factored into the surface map

2
v

k
H

2
v

k
H

2
v

k
G

2
v

k
G

x
2

y
2

z2

view map texture Hk

v
2surface map texture G

k

v
2

(s ,t)
1 1

v
2

v
2

(s ,t)
2 2

v
2

v
2

(s ,t)
3 3

v
2

v
2

(x ,y)
3 3

v
2

v
2

(x ,y)
2 2

v
2

v
2

(x ,y)
1 1

v
2

v
2

v
1

v
3

v
2

d
2

v
2

d
1

v
2

d
3

v
2

Computation of Texture

Coordinates (vertex 3)

• Computed in local reference frame of vertex v3

• Applied to view map

• Blending factored into the surface map

• Computed in local reference frame of vertex v3

• Applied to view map

• Blending factored into the surface map

3
v

k
H

3
v

k
H

3
v

k
G

3
v

k
G

x
3

y
3

z3

d
1

v
3 d

2

v
3

d
3

v
3

view map texture Hk

v
3surface map texture G

k

v
3

(s ,t)
1 1

v
3

v
3

(s ,t)
2 2

v
3

v
3

(s ,t)
3 3

v
3

v
3

(x ,y)
3 3

v
3

v
3

(x ,y)
2 2

v
3

v
3

(x ,y)
1 1

v
3

v
3

v
1

v
3

v
2

Intel Corporation 23

�� ��

Image Synthesis using Vertex-

centered Approximation of

�
�

�

�
�

�

�

��
iF

�
�

�

�
�

�

�

��
iF

�� ��

�� ��

i
�

F

�� ��

�� ��

�� ��

�� ��

�� ��

�� ��

�� ��

�� ��

��

Vertex 1Vertex 1 Vertex 2Vertex 2 Vertex 3Vertex 3

Hardware-Accelerated

Implementation

• Multitexturing hardware is essential for LFM

– If extended color range is supported

• 1 pass per triangle-centered approx. term

• 3 passes per vertex-centered approx. term

• nVidia™ register combiners

– Support partial extended color range support

– 2 passes for 1 modulation of 2 textures

• Multitexturing hardware is essential for LFM

– If extended color range is supported

• 1 pass per triangle-centered approx. term

• 3 passes per vertex-centered approx. term

• nVidia™ register combiners

– Support partial extended color range support

– 2 passes for 1 modulation of 2 textures

Intel Corporation 24

Hardware-accelerated

Implementation

• Mean extraction

– Subtract mean triangle/vertex view before

decomposition of light field matrix

– Decompose modified light field matrix

– Changes rendering routine minimally

• Texture map �
k
 using mean view

• Add approximation terms for modified light field matrix

– Reduces rendering passes for vertex-based approx.

• Mean extraction

– Subtract mean triangle/vertex view before

decomposition of light field matrix

– Decompose modified light field matrix

– Changes rendering routine minimally

• Texture map �
k
 using mean view

• Add approximation terms for modified light field matrix

– Reduces rendering passes for vertex-based approx.

Hardware-accelerated

Implementation

• Positive approximation

– Subtract minimum triangle/vertex view before

decomposition of light field matrix

• Resulting light field matrix is positive

– Decompose resulting light field matrix

• First pair of singular vectors is positive

• No support for extended color range support required

• Only one term approximation is possible

• Positive approximation

– Subtract minimum triangle/vertex view before

decomposition of light field matrix

• Resulting light field matrix is positive

– Decompose resulting light field matrix

• First pair of singular vectors is positive

• No support for extended color range support required

• Only one term approximation is possible

Intel Corporation 25

Talk Overview

• Introduction

• Acquisition and resampling of data

• Surface light field approximation

• Light field mapping

• Compression of light field maps

• Introduction

• Acquisition and resampling of data

• Surface light field approximation

• Light field mapping

• Compression of light field maps

Compression of

Light Field Maps

• Light field maps are redundant• Light field maps are redundant

Example of Tiled View MapsExample of Tiled View Maps

Intel Corporation 26

Compression of

Light Field Maps

• Compression can be applied on several levels

– storage requirements reduction

– run-time requirements reduction

• Rendering directly from compressed light field

maps is essential for interactive performance

– Vector quantization (VQ)

– Hardware texture compression (S3TCTM)

• Approximation combined with compression gives

4 orders of magnitude compression ratios

• Compression can be applied on several levels

– storage requirements reduction

– run-time requirements reduction

• Rendering directly from compressed light field

maps is essential for interactive performance

– Vector quantization (VQ)

– Hardware texture compression (S3TCTM)

• Approximation combined with compression gives

4 orders of magnitude compression ratios

Run-Time Memory

Reduction

Online Texture MemoryOnline Texture Memory

Compression of

Surface Light Fields

Raw Surface

Light Field Data

Raw Surface

Light Field Data

Light Field MapsLight Field Maps

Decomposition

(100:1)

Decomposition

(100:1)

Vector Quantization

(10:1)

Vector Quantization

(10:1)

Hardware Texture

Compression (8:1)

Hardware Texture

Compression (8:1)

Disk Storage

Reduction

Disk StorageDisk Storage

Intel Corporation 27

Compression Results

Compression of Light Fields
Models

Raw Light
Field Data

Light Field Maps

VQ S3TC VQ+S3TC

Bust 3.0GB 44MB (68:1) 5.3MB (566:1) 7.3MB (409:1) 883KB (3396:1)

Star 2.9GB 32MB (91:1) 5.1MB (580:1) 5.3MB (566:1) 850KB (3412:1)

Dancer 2.5GB 21MB (117:1) 3.6MB (694:1) 3.5MB (714:1) 600KB (4167:1)

Turtle 2.5GB 29MB (86:1) 4.1MB (609:1) 4.8MB (521:1) 683KB (3660:1)

SIGGRAPH 2001 Course:
Acquisition and Visualization of Surface Light Fields

Light Field Mapping:
Hardware-Accelerated Visualization of Surface Light Fields

Wei-Chao Chen Radek Grzeszczuk Jean-Yves Bouguet
University of North Carolina at Chapel Hill Intel Corporation Intel Corporation

These are the notes for Session 8 of the course on acquisition and
visualization of surface light fields. We describe here a method
for efficient representation and interactive visualization of surface
light fields called light field mapping. We do not discuss in the
notes specific implementation issues, ignore the problem of com-
pression of light field maps and do not present detailed results of the
experiments. A more complete document describing our method
will be published at a later time. We encourage the reader to visit
http://www.intel.com/research/mrl/research/lfm for an up to
date information about the project.

1 Summary of Proposed Approach

A surface light field is a 4-dimensional function f(r; s; �; �) that
completely defines the radiance of every point on the surface of an
object in every viewing direction. The first pair of parameters of this
function (r; s) describes the surface location and the second pair of
parameters (�; �) describes the viewing direction. In practice, the
surface light field function is never available in a continuous form,
instead, it is almost always given in a discrete form as a set of points
in a 4-dimensional space.

Clearly, a direct representation and manipulation of the light field
data is impractical because of the large size. Instead, we propose to
approximate the discrete 4-dimensional surface light field function
f as a sum of a small number of products of lower-dimensional
functions

f(r; s; �; �) �

KX
k=1

gk(r; s) hk(�; �): (1)

We show that it is possible to construct the approximations of this
form that are both compact and accurate by taking advantage of the
spatial coherence of the surface light fields. We accomplish this by
partitioning the surface light field data across small surface primi-
tives and building the approximations for each part independently.
The partitioning is done in such a way as to ensure continuous ap-
proximations across the neighboring surface elements as explained
in Section 2. We also show that by taking advantage of existing
hardware support for texture mapping and composition we can vi-
sualize surface light fields directly from the proposed representation
at highly interactive frame rates as described in Section 3. Because
the discrete functions gk and hk encode the light field data and are

1Department of Computer Science, Sitterson Hall, South Columbia St
University of North Carolina, Chapel Hill, NC 27599-3175 USA
E-mail: ciao@cs.unc.edu

2Intel Corporation, Microprocessor Research Labs, SC12-303
2200 Mission College Blvd., Santa Clara, CA 95052
E-mail: radek.grzeszczuk@intel.com
E-mail: jean-yves.bouguet@intel.com

Figure 1: The figure shows a combination of synthetic and physical
objects rendered directly from their light field map approximations.
Complex, physically realistic reflectance properties of these objects
are correctly represented and visualized.

stored in a sampled form as texture maps, we call them the light
field maps. Similarly, we refer to the process of rendering from this
approximation as light field mapping.

We have acquired the surface light fields and computed the light
field map representations for several physical objects with diverse
and complex reflection properties and a variety of synthetic objects
and scenes. Figure 1 shows a subset of these objects. A practical
method for acquiring the surface light field data of physical objects
is discussed in Section 4. The supplemental material for the notes
includes several animations of physical and synthetic objects ren-
dered with light field mapping.

1.1 Comments on Related Work

The problem of compression and efficient representation of photo-
realistic radiance data has been studied extensively in recent years.
To make the relationship between light field mapping and this work
more apparent, we included in the notes a comparison between our
approach and the most pertinent recent techniques published in the
field. These comments can be found in Appendix A and include
a comparison of light field mapping with three other approaches:
the eigen-texture method [8], hardware rendering of BRDFs [6],
and recent work on representation and visualization of surface light
fields [10]. We suggest the readers look at them after reading the
notes describing the algorithm.

2 Surface Light Field Approximation

The approximation algorithms described in this section assume
that the surface light field data are given as a 4-dimensional grid
f(rp; sp; �q ; �q), where index p = 1; : : : ;M refers to the discrete
values (rp; sp) describing the location on the surface of the object
and index q = 1; : : : ; N refers to the discrete values (�q ; �q) of the
two viewing angles. We defer the discussion of the acquisition and
the resampling of input radiance data into this representation until
Section 4.

As stated in the introduction, our goal is to approximate the dis-
crete 4-dimensional surface light field data by a sum of products of
discrete 2-dimensional functions

f(rp; sp; �q; �q) �
KX
k=1

gk(rp; sp) hk(�q; �q): (2)

Naturally, this approximation is only practical if the number of
summation terms K is small. As it turns out, it is difficult to
find a good approximation to the complete surface light field data
f(rp; sp; �q ; �q) using a few summation terms. However, as we
show in the document, by partitioning the surface of the object into
smaller units and decomposing the surface light field of each unit
independently we obtain a close approximation of the original data
with just a few approximation terms. This translates to efficient
storage and fast rendering, since the 2-dimensional functions gk and
hk are relatively small and can be stored and processed efficiently
on the computer as texture maps. In the remainder of the document
we will refer to functions gk as the surface maps and functions hk
as the view maps based on the parameterization of these functions.

We choose to use SVD (singular value decomposition) for the
factorization of surface light fields because it is robust and produces
an optimal solution. However, to apply SVD, we need to rearrange
the 4-dimensional surface light field data into a matrix. As an ex-
ample let us consider a surface light field fP (rp; sp; �q; �q) corre-
sponding to a surface element P . We rearrange this function into
a matrix so that each row of the matrix corresponds to a different
location on the surface element P and each column of the matrix
represents a different viewing direction for a given sample. If sur-
face element P consists of M distinct surface samples and each
surface location is visible from N viewing directions, the resulting
M �N matrix can be written as

F
P =

�
fP
1

fP
2

� � � fPN
�
; (3)

where vector fPi of size M � 1 represents the appearance of the
surface element P under the ith viewing direction.

2.1 Approximation Through SVD

The SVD of FP is the factorization FP = USVT where the two
square matrices U = [u1 u2 : : : uM] and V = [v1 v2 : : : vN]
are unitary and S = diag(�1; : : : ; �N) is a diagonal matrix of pos-
itive and monotonically decreasing singular values �k. The matrix
product USVT can be written as a sum

F
P =

NX
k=1

�kukv
T
k : (4)

Truncating the above sum from N to K corresponds to approximat-
ing each column of matrixFP by its orthogonal projection onto the
linear subspace spanned by K vectors u1; : : : ;uK . This operation
results in an optimal root mean square approximation of FP given
a fixed budget of K vector pairs fuk;vkg.

To obtain the form of approximation as in Equation (2), we
rewrite each summation term in Equation (4) as (�ukuk)(�

v
kv

T
k),

∆

θ

φ

d

x

y

z

v2

v1

v3 ∆

θ

φ

v

1
∆2

∆3
∆R

d

x

y

z

(a) (b)

Figure 2: The viewing angles (�; �) are the azimuth and elevation
angles of vector d in the reference frame (x; y; z). For triangle-
centered approximation (a), the reference frame is attached to each
triangle where the z axis is orthogonal to the triangle plane. For
vertex-centered approximation (b), the reference frame is attached
at each vertex v where the z axis is parallel to the surface normal at
the vertex.

where �k = �uk �
v
k , and rearrange vector u0k = �ukuk into the

surface map gPk (rp; sp) and vector v0k = �vkvk into the view map
hPk (�q; �q). Since we only wish to retain the first few summation
terms of the factorization, we use an efficient algorithm that com-
putes partial SVD for the first few largest singular values [9].

2.2 Triangle-centered Approximation

Since the geometry of our models is represented as a triangular
mesh, an obvious partitioning of the light field function f(r; s; �; �)
is to split it between the individual triangles

f(r; s; �; �) =
nX
i=1

�4i(r; s) f(r; s; �; �) (5)

where n is the total number of mesh triangles and each function
�4i(r; s) is equal to one within the triangle4i and zero elsewhere.
Each summation term in Equation (5) has then a finite support over
a single triangle and corresponds to the part of the surface light field
over this triangle. In the final step of partitioning we reparameterize
the surface light field corresponding to each triangle in the local
coordinate of this triangle. To this end, the two viewing direction
angles � and � are defined as azimuth and elevation angles of the
viewing direction vector in a fixed reference frame attached to the
triangle as shown in Figure 2a. We refer to the reparameterized part
of surface light field corresponding to each triangle as the triangle
light field and for triangle4i denote it as f4i(r; s; �; �). Note that
we use the same letters to denote the local parameters of the triangle
light field to simplify the notation.

Let us consider the approximation of the discrete surface light
field over triangle 4i

f4i(rp; sp; �q; �q) �

KX
k=1

g
4i

k (rp; sp) h
4i

k (�q; �q); (6)

where (rp; sp) are the M4i discrete samples on the surface of tri-
angle 4i, and (�q; �q) are the N discrete viewing direction an-
gles. Just as we rearranged the discrete surface light field data
fP (up; vp; �q; �q) into matrix FP , we rearrange the discrete tri-
angle light field data f4i(up; vp; �q; �q) into matrix

F
4i =

�
f
4i
1

f
4i
2

� � � f
4i
N

�
; (7)

where each column of the matrix represents the appearance of the
triangle 4i under a different viewing direction. We refer to the

Figure 3: The figure shows the finite support of the hat functions
�vj around vertex vj . Functions �v1 , �v2 and �v3 need to be
continuous functions and sum up to one inside �i.

resulting matrix of size M4i �N as the triangle light field matrix.
Performing the same approximation steps on matrix F4i that were
used in Section 2.1 to process matrix FP results in the form of
approximation given by Equation (6).

Although the triangle-based approximation offers an elegant way
of representing and compressing the complete surface light field
data f(rp; sp; �q; �q), when rendered, it produces visible disconti-
nuities at the edges of the triangles for a small number of decompo-
sition terms K.

2.3 Vertex-centered Approximation

To eliminate the discontinuities across triangle boundaries intro-
duced by the triangle-centered approximation we propose a differ-
ent partitioning of surface light field data around every vertex

f(r; s; �; �) =

mX
j=1

�vj (r; s) f(r; s; �; �) (8)

where m is the total number of vertices vj in the mesh geometry,
and each function �vj takes values between zero and one in the
ring of triangles around vertex vj , and zero everywhere else. Each
summation term in Equation (8) has a finite support over the ring of
triangles around vertex vj . Equation (8) defines a valid partitioning
of the surface light field only if the sum of all weighting functions
�vj equals one over the entire object surface. One possible choice
for the functions �vj is the barycentric weight of each point in the
ring of triangles relative to vertex vj . Because of their shape, the
weighting functions are often referred to as the hat functions. The
top row of Figure 3 show hat functions �v1 , �v2 , �v3 for three ver-
tices v1, v2, v3 of triangle 4i. As shown at the bottom of Figure 3,
inside triangle 4i the hat functions add up to unity

�4i(r; s) = �v1
4i

(r; s) + �v2
4i

(r; s) + �v3
4i

(r; s) (9)

where we used �
vj
4i

, j = 1; 2; 3 to denote the portions of hat func-
tions that correspond to triangle 4i. In the final step of vertex-
centered partitioning we reparameterize the surface light fields cor-
responding to each vertex in the local coordinates of this vertex.
To this end, the two viewing direction angles � and � are defined
as the azimuth and elevation angles of the viewing direction vector
in a fixed reference frame attached to the vertex as shown in Fig-
ure 2b. We refer to the reparameterized part of surface light field
corresponding to each vertex as the vertex light field and for vertex
vj denote it as fvj (r; s; �; �). Note that we use the same letters
to denote the local parameters of the vertex light field in order to
simplify the notation.

θ

φ

d

x

y

z

p

y

x

(0,0) (1,0)

(1,1)(0,1)

(x ,y)p p

Figure 4: This figure illustrates the process of converting viewing
direction into the texture coordinates.

Let us consider the approximation of the discrete vertex light
field data over vertex vj

fvj (rp; sp; �q; �q) �
KX
k=1

g
vj
k (rp; sp) h

vj
k (�q; �q); (10)

where (rp; sp) are the Mvj surface samples covering the whole
ring of triangles around vj , and (�q; �q) are the N discrete viewing
direction angles represented in the vertex reference frame. As sug-
gested by Figure 2b, without loss of generality, let us assume that
triangles 41;41; : : : ;4R form the ring around the vertex. Then,
similarly to triangle-centered approximation, we represent the ver-
tex light field fvj (rp; sp; �q ; �q) by the matrix

F
vj =

2
666664

w
vj
41
F41

w
vj
42
F42

...

w
vj
4R

F4R

3
777775
; (11)

where each matrixw
vj
4i
F4i is the weighted triangle light field ma-

trix corresponding to the ring triangle 4i and the square diagonal
matricesw

vj
4i

are computed based on the definition of �
vj
4i

. We re-
fer to the resulting matrix Fvj of size Mvj �N as the vertex light
field matrix. Performing the same approximation steps on matrix
Fvj that were used in Section 2.1 to process matrix FP results in
the form of approximation given by Equation (10).

Although the approximation is computed at each vertex, it can
be expressed independently for each triangle 4i as

f4i(rp; sp; �q; �q) =
3X

j=1

f
vj
4i

(rp; sp; �q ; �q) (12)

where index j runs over the three vertices of the given triangle and
f
vj
4i

describes the part of the vertex light field corresponding to the
ring triangle 4i.

Note that in the vertex-centered approximation each triangle
shares its light field maps with the neighboring triangles insuring
a continuous approximation across triangles regardless of the num-
ber of approximation terms K.

3 Surface Light Field Rendering

This section describes light field mapping, i.e., rendering of surface
light field approximations. We start by presenting the rendering al-
gorithms for the triangle-centered and the vertex-centered approxi-
mations and then discuss the efficient implementations of these gen-
eral rendering routines given specific hardware features.

3.1 Representation of Light Field Maps

We denote the 2D texture representation of surface map gk(rp; sp)
as Gk(s; t) and the 2D texture representation of view map
hk(�q ; �q) as Hk(x; y). For a given triangle 4i, the pixels of its
surface map Gk correspond to the discrete surface samples over this
triangle as shown in the middle column of Figure 5. Note that tex-
ture coordinates (si; ti), i = 1; 2; 3 correspond to triangle vertices
vi. For a given triangle 4i, the pixels of its view map Hk cor-
respond to the orthographic projection of the viewing directions,
expressed in the local coordinate system xyz as shown in Figure 4,
onto the plane xy shifted and scaled to fit into the traditional texture
coordinates range. This projection allows a simple texture coordi-
nate computation

x = (dx+ 1)=2; y = (dy+ 1)=2 (13)

where d represents the normalized local viewing direction and vec-
tors x and y correspond to the axis of the local reference frame.
Other transformations from 3D directions to 2D maps are possible
[5] but we found the one described here efficient and accurate.

3.2 Rendering Algorithm

We showed in Section 2 that both the triangle-centered and the
vertex-centered surface light field approximations result in a sep-
arate set of light field maps for each mesh triangle. This is re-
flected by Equation (6) for the triangle-centered approximation and
by Equation (12) for the vertex-centered approximation and means
that both approximations render each triangle independently. In
both cases, for each triangle, the rendering algorithm evaluates the
consecutive approximation terms and adds the results through im-
age compositing. The only difference between the two approaches
is therefore in how an individual approximation term is evaluated.

Figure 5 shows, for one approximation term, the light field maps
used for triangle-centered (a) and vertex-centered rendering (b).
The surface map coordinates for the triangle-centered approxima-
tion (s4i ; t

4

i) are the same as the surface map coordinates for
the vertex-centered approximation (s

vj
i ; t

vj
i) and do not need to

be recomputed when the viewing direction changes. The view
map coordinates, on the other hand, are recomputed every time
the view changes. For triangle-centered approximation, the coor-
dinates (x4i ; y

4

i) are computed by applying Equations (13) to vec-
tors d4i representing the viewing directions for triangle vertices vi
in the triangle reference frame as shown in Figure 5a. For vertex-
centered approximation, the coordinates (x

vj
i ; y

vj
i) are recomputed

three times, each time in the local coordinate system of a different
vertex vj of the triangle, as shown in Figure 5b.

After computing the light field map coordinates, we proceed with
evaluating kth approximation term. For triangle-centered approx-
imation this is equivalent to multiplying pixel-by-pixel the image
projections of the two shaded texture fragments shown in Figure 5a.
To this end, we first texture map a given triangle using surface map
G4

k by assigning coordinates (s4i ; t
4

i) to vertices vi and store the
result. We then texture map the same triangle using view map H4

k

by assigning coordinates (x4i ; y
4

i) to vertices vi. In the end, we
perform pixel-by-pixel multiplication of the image obtained by the
first step with the image obtained in the second step. For vertex-
centered approximation, kth approximation term is evaluated by
applying the same multiplication to the 3 pairs of light field maps
shown in Figure 5b and adding the results together. Each multipli-
cation is computed as for the triangle-centered case, except we use
a different pair of light field maps and a different set of texture co-
ordinates each time. Note that although the surface maps G

vj
k are

alpha-blended as indicated in the figure by gradient shading of the
texture fragments, this does not alter the rendering algorithm in any

d

x y

z

v
v1

v3 3

d2d1

view map texture H k
D

D

D

D

2

surface map texture Gk
D

(s ,t)1 1
D D

(x ,y)1 1
D D

(s ,t)2 2
D D

(s ,t)3 3
D D

(x ,y)2 2
D D (x ,y)3 3

D D

(a)

x

y

z

v2
v1

v3

d1
d2

d3

1

1

1

v1

v1

v1

view map texture Hk

(x ,y)3 3
v1 v1

(x ,y)2 2
v1 v1(x ,y)1 1

v1 v1

v1surface map texture Gk

(s ,t)1 1
v1 v1

v1

(s ,t)2 2
v1 v1

(s ,t)3 3
v1 v1

v1

x y

z

v2

v3

d1
d2

d3

3
3

3

v3
v3

v3

view map texture Hk
v3surface map texture Gk

v3

(s ,t)1 1
v3 v3

(s ,t)2 2
v3 v3

(s ,t)3 3
v3 v3

(x ,y)3 3
v3 v3

(x ,y)2 2
v3 v3

(x ,y)1 1
v3 v3

x

y

zv2
1

v3

d1
d2

d3

2

2

2

v2v2

v2

v

view map texture Hk
v2surface map texture Gk

v2

(s ,t)1 1
v2 v2

(s ,t)2 2
v2 v2

(s ,t)3 3
v2 v2

(x ,y)3 3
v2 v2

(x ,y)2 2
v2 v2

(x ,y)1 1
v2 v2

(b)

Figure 5: The figure shows, for one approximation term, the light
field maps used for triangle-centered rendering (a) and vertex-
centered rendering (b). Surface map coordinates (si; ti) are all the
same, but view map coordinates (xi; yi) change depending on the
reference frame used to compute them.

way. Blending is a direct result of the weighting applied during the
construction of matrix Fvj as shown in Equation (11).

3.3 Hardware Accelerated Implementation

One of the fundamental operations of the proposed rendering al-
gorithms is the pixel-by-pixel multiplication, or modulation, of the
surface map fragment by the corresponding view map fragment.
This operation corresponds to evaluating one term of the approx-
imation sum. Multitexturing hardware support enables us to com-
pute the modulation of two texture fragments very efficiently in one
rendering pass. This means that to evaluate a K-term approxima-
tion, we need K rendering passes for the triangle-centered repre-
sentation and 3K rendering passes for the vertex-centered represen-
tation. Without multitexturing hardware support we can implement
the rendering algorithms described above using an accumulation
buffer, though significantly less efficiently.

4 Acquisition and Resampling of Data

In practice, a surface light field is given as a sparse set of images
registered to a polygonal approximation of the surface of the ob-
ject. This section describes the acquisition of the geometry and the
capture and resampling of the radiance data.

4.1 Data Acquisition

Figure 6 gives an illustration of the overall data acquisition pro-
cess. A total of NI (200 < NI < 400) images are captured with
a hand-held digital camera (Fig. 6a). Figure 6b shows one sample

(a) (b)

(c) (d) (e)

Figure 6: Data acquisition. (a) The user is capturing approxi-
mately 300 images of the object under a fixed lighting condition
using a hand-held digital camera. (b) One sample image of size
2000 � 1312. The color circles guide the automatic detection of
the grid corners that are used for computing the 3D location of the
camera. (c) The painted object being scanned using the structured
lighting system. (d) The complete 3D triangular mesh consisting of
7228 triangles constructed from 20 scans. (e) The projection of the
triangular mesh onto image (b).

image. Observe that the object is placed on a specific platform de-
signed for the purpose of automatic registration. The color circles
are first automatically detected on the images using a simple color
segmentation scheme. This provides an initial guess for the po-
sition of the grid corners that are then accurately localized using a
corner finder. The precise corner locations are then used to compute
the 3D position of the camera relative to the object. This may be
done, given that the camera has been pre-calibrated. The outcome
of this process is a set of NI images captured from known vantage
points in 3D space. The object geometry is computed in a second
stage of data acquisition. A structured lighting system consisting
of a projector and a camera is used for that purpose. The two de-
vices are shown in Figure 6a. Figure 6c shows an example camera
image acquired during scanning. The projector is used to project
a translating stripped pattern onto the object. A similar temporal
analysis employed by Curless et al. [3] and Bouguet et al. [2] is
used for accurate range sensing. In order to facilitate scanning, the
object is painted with white removable paint, a technique especially
useful when dealing with dark, highly specular or semi-transparent
objects. We take between 10 and 20 scans to completely cover the
surface geometry of the object. Between two consecutive scans,
the object is rotated in front of the camera and projector by about
20 degrees. For that purpose, the calibration platform has been de-
signed to rotate about its central axis. The individual scans are au-
tomatically registered together in the object reference frame using
the same grid corners previously used for image registration. The
resulting cloud of points (approx. 500,000 points) is then fed into
mesh editing software [4] to build the final triangular surface mesh

shown in Figure 6d. Since we use the same calibration platform
for both image and geometry acquisition, the resulting triangular
mesh is naturally registered to the camera images. Figure 6e shows
the projection of the mesh onto the camera image displayed in Fig-
ure 6b illustrating the precise alignment of the geometry and the
images. The image reprojection error is less than one pixel.

Visibility Computation. The next preprocessing step identifies
visible cameras for all mesh triangles. To this end, the algorithm
renders the object from the vantage point of the camera, reads out
the resulting z-buffer and compares it against the depth of each tri-
angle expressed in the camera reference frame. A triangle is con-
sidered visible only if its view is completely unoccluded. Repeating
this process for all NI images results in a list of visible views for
each triangle. There are both advantages and limitation associated
with the proposed visibility computation. Choosing a conserva-
tive visibility threshold simplifies handling of self-occlusions, since
there is no danger of mixing foreground and background pixels. On
the other hand, this approach increases approximation error in the
regions of object that exhibit self-occlusion.

4.2 Data Resampling

The visible triangle views correspond to a set of textures patches of
irregular size captured from various viewing directions. In this sec-
tion we explains two steps of resampling theses texture patches into
a format suitable for the decomposition: normalization of texture
sizes and resampling of the viewing directions.

Normalization of Texture Sizes. Recall that the decomposi-
tion algorithms described in Section 2 assume light field data in
the form of matrices. This requires that we normalize each texture
patch to have the same shape and size as the others. We use texture
mapping graphics hardware to resample the data. The number of
pixels after resampling for individual triangle varies from 1 pixel,
for 1� 1 triangle, to 2048 pixels, for 64� 64 triangle.

Resampling of Viewing Directions. At this stage, we have
a uniform number of samples for each triangle view but the sam-
pling of views is still irregular. However, for the decomposition,
we also need a regular sampling of the viewing directions. Con-
sider, for example, a triangle with many similar views and a few
others. The direct decomposition of these views will produce a re-
sult highly biased toward the cluster of similar views that largely
neglects the other views. To avoid this problem, we resample the
triangle views in the space of viewing directions before performing
the decomposition.

To this end, we first project the viewing directions for the vis-
ible triangle views di, i = 1; : : : ; V on a texture map H of unit
size using Equations (13). The result of this operation is a set of
texture coordinates fxi; yig. Figure 4 illustrates the projection step
for a single viewing direction. In the next step, we express the
texture coordinates fxj ; yjg, j = 1; : : : ; Vp of centers of pixels
of texture map H as a blend of texture coordinates fxi; yig from
the Delaunay triangulation of the original projected views. Finally,
we compute a set of triangle views that correspond to texture co-
ordinates fxj ; yjg by blending the initial triangle views using the
corresponding weighting factors. Note that we assume the viewing
direction is constant across a triangle. Although this is certainly not
true for large triangles, it is a sufficient approximation for our data
sets. In the future, we plan to remove this assumption and perform
more accurate interpolation.

Although the resolution of view maps can vary from triangle to
triangle, we choose for convenience a fixed number of samples. In
the experiments presented in this document, we use a resolution of
32� 32 = 1024.

A Comments on Related Work

In this section we comment on the relationship of light field map-
ping to some recent work on compression and visualization of radi-
ance data. When describing the related methods, we have adjusted
the notation to follow as much as possible the formulation intro-
duced earlier in the notes.

A.1 Eigen-texture Approach

We start by comparing light field mapping to the eigen-texture ap-
proach proposed by Nishino et al [8]. The eigen-texture approach
is an early example of applying principal component analysis [1]
to compressing a set of views of an object. It constitues an impor-
tant contribution to solving the problem of efficient representation
of view-dependent radiance data. This technique is similar to the
light field mapping approach but ultimately the two methods are
significantly different.

For a given triangle4i, the eigen-texture approach approximates
a set of V triangle views I4i = [I4i

1
I
4i
2

: : : I4i
V], normalized to

have the same shape and number of samples, as

I
4i =

KX
k=1

g4i
k (rp; sp) h

4i
k (14)

where g4i

k (rp; sp) are K principal eigenvectors of I4i and h4i

k =

[h4i

k;1 h
4i

k;2 : : : h
4i

k;V] is the projection of I4i onto the space

spanned by eigenvectors g4i
k (rp; sp). Each original view can be

synthesized from this approximation quite easily as1

I
4i
m =

KX
k=1

g4i

k (rp; sp) h
4i

k;m: (15)

Unfortunately, the synthesis of novel views using the eigen-texture
approach cannot be achieved as easily as the synthesis of the origi-
nal views. The authors propose to compute the new views by inter-
polating values h4i

k;m in Equation (15), however, there are several
problems with this approach. The eigen-texture method does not
interpolate the viewing directions inside a triangle, instead it keeps
them constant for all surface samples. A more correct method of
view synthesis would be to interpolate values h4i

k;m per surface sam-
ple. In its current form, the eigen-texture approach will produce
noticeable artifacts, especially if we zoom in on the object, since
then the assumption about a constant viewing angle is increasing
inaccurate. The authors do not mention how the interpolation is
done or how many original views are used in the process. Most
likely, they blend 2 or 3 original views to get the new view. This
approach leads to an implementation that is less efficient than light
field mapping since it requires multiple rendering passes to evaluate
each approximation term.

The eigen-texture method also does not address the issue of con-
tinuity across individual triangles. In its current implementation,
it will produce artifacts at the edges of the triangles regardless
of the number of approximation terms used. Light field mapping
avoids discontinuities at triangle edges by decomposing the light
field data on per vertex basis, rather then on per triangle basis.
Vertex-centered approximation of the surface light field data is ex-
plained in Section 2.3. Because the eigen-texture approach does not
have an equivalent of the vertex-centered approximation, we can
only compare it to the triangle-centered approximation described in
Section 2.2.

1Note that the Equation (15) in this document corresponds to Equa-
tion (15) in the paper by Nishino et al. [8] except that the notation was
changed to adhere to the formalism used here.

The most important difference between the eigen-texture method
and the light field mapping approach is how the decomposition is
done. The light field mapping approach does not decompose the
matrix of original views I4i . Instead, it first resamples the original
views into N � V views uniformly distributed in the space of
viewing directions � and �

F
4i =

�
f
4i
1

f
4i
2

� � � f
4i

N

�
(16)

and subsequently decomposes the resulting data structure and ap-
proximates it as a sum of products of 2-dimensional functions

F
4i =

KX
k=1

g4i

k (rp; sp) h4i

k (�q ; �q): (17)

The fact that functions h4i

k (�q; �q) are arranged in a 2-dimensional
structure that uniformly samples viewing directions � and � is very
important because it results in a much more efficient view synthesis
process than the one proposed by the eigen-texture method. This
new representation allows us to change the viewing angle for each
surface point, not like the eigen-texture method that fixes the view-
ing angle across the whole triangle. This fact has important benefits.
We can now correctly synthesize any view of the object, even the
close-up views. There is no need for view interpolation and each
approximation term can be evaluated in just one rendering pass.
Most importantly, our image synthesis algorithm is simple and can
be fully implemented in hardware—it is just a sequence of texture
mapping operations blended together.

Finally, we would like to prove that the eigen-texture method
results in an approximation that is not as accurate as the light field
mapping approximation. Let W be the matrix that resamples I4i

in Equation (14) into matrix F4i in Equation (16), i.e.

F
4i = I

4i W: (18)

Clearly, both methods need to compute F4i to be able to syn-
thesize an arbitrary view of the object. The difference is that the
light field mapping approach precomputes F4i and then calculates
its approximation, and the eigen-texture method first approximates
I4i and then uses this approximation to synthesize F4i . Since the
light field mapping approximation is optimal, the error it generates

El = k I
4i W � �K(I

4i W) k (19)

must be smaller than the error produced by the eigen-texture ap-
proach which in the best case is

Ee = k (I4i � �K(I
4i))W k: (20)

where �K denotes the K-term approximation of the data computed
using singular value decomposition. Note that the actual error gen-
erated by the eigen-texture method will be larger than Ee because
this method does not compute the matrix W correctly. Addition-
ally, the eigen-texture approach needs to storeW explicitly for each
surface triangle or needs to recompute it on-the-fly every time the
viewing direction changes.

A.2 Hardware-accelerated Photorealism

Recent proliferation of inexpensive but powerful graphics hardware
and new advances in digital imaging technology are enabling novel
methods for realistic modeling of the appearance of physical ob-
jects. On the one hand, we see a tendency to represent realistic
parametric reflectance models with their sample-based approxima-
tions that can be evaluated efficiently using new graphics hardware

features [5, 6, 7]. On the other hand, we are witnessing a prolif-
eration of image-based rendering and modeling techniques that at-
tempt to represent the discrete radiance data directly in the sample-
based format without resorting to the parametric models at all.

Kautz and McCool [6] propose a method for hardware assisted
rendering of arbitrary BRDFs through their decomposition into a
sum of 2D separable functions. Although we are using a similar
form of decomposition, our application is fundamentally different.
This earlier work is limited to sample-based representation of syn-
thetic reflectance models because it assumes fixed reflectance ma-
terial across the whole surface of the object. Meanwhile, our ap-
proach allows each surface point to have different reflectance prop-
erties and is therefore ideally suited for modeling of complex, real
world surface light fields.

A.3 Compression and Visualization of SLFs

Wood et al [10] demonstrated the feasibility of surface light fields
for 3D photography. In their approach, all visible samples from one
surface grid point are assembled into a data unit called the lumi-
sphere.The lumisphere parameters (�; �) are computed with respect
to the actual surface normal.

The authors propose two compression algorithms. Both algo-
rithms operate on irregularly sampled data by treating each lumi-
sphere as an individual function instead of a fixed-size vector. The
first algorithm, called functional quantization, is similar to vector
quantization where Lloyd iteration is used for function clustering.
The second algorithm, called principal function analysis, is the ex-
tension of principal component analysis, where a subspace of the
lumishpere function space is used to represent the original lumi-
spheres. Both algorithms use a subset of the original data as a train-
ing set to reduce processing time. As expected, functional quanti-
zation produces noisier images than principal function analysis.

Our compression approach differs significantly. We approximate
light field data over small surface patches and they apply the dimen-
sionality reduction over all surface lumispheres. Because their ap-
proach to the computation of principal component analysis over the
whole surface is prohibitively expensive, they are forced to perform
analysis on the training set instead of the complete data. Since the
training set assumes uniform sampling of the original data and this
assumption is normally not valid, this method will result in certain
artifacts, e.g., lost highlights.

Wood et al propose a 2-pass rendering algorithm. The first pass
renders the mesh using Gouraud shading with the surface light field
parameters mapped to RGBA values. The second pass uses false
colors of the image generated in the first pass to index to the lumi-
sphere database. When using coarse geometry this approach will
incorrectly interpolate the surface normals using Gouraud shading.
To alleviate this problem, the authors introduce a view-dependent
geometry refinement at the cost of increasing the complexity of the
renderer. The efficiency of the second pass depends both on the de-
sired image size and the lumisphere decompression algorithm. Re-
ducing per-frame decompression overhead can increase rendering
performance at the cost of increased memory footprint. Further-
more, since each pixel is resolved individually, the rendered image
may exhibit aliasing effects if the lumispheres do not have good
spatial coherency. Additionally, using false coloring often results in
bad temporal coherency and will therefore contribute to additional
artifacts of this rendering routine.

Light field mapping is fundamentally different. We use multi-
texturing hardware for efficient decompression and rendering while
Wood et al depend mostly on software rendering. As a result, our
rendering algorithm is significantly faster. Also, since our render-
ing algorithm uses graphics hardware to decompress the light field
maps, there is almost no run-time memory overhead for decompres-
sion.

References

[1] C. M. Bishop. Neural Networks for Pattern Recognition. Clarendon Press, 1995.
[2] J-Y. Bouguet and P. Perona. 3D Photography Using Shadows in Dual-Space

Geometry. International Journal of Computer Vision, 35(2):129–149, December
1999.

[3] B. Curless and M. Levoy. Better Optical Triangulation through Spacetime Anal-
ysis. Proc. 5th Int. Conf. Computer Vision, Boston, USA, pages 987–993, 1995.

[4] Geomagic Studio 3.0. Raindrop Geomagic.
http://www.geomagic.com/products/studio/.

[5] W. Heidrich and H-P. Seidel. Realistic, Hardware-Accelerated Shading and
Lighting. Proceedings of SIGGRAPH 99, pages 171–178, August 1999.

[6] J. Kautz and M. D. McCool. Interactive Rendering with Arbitrary BRDFs using
Separable Approximations. Eurographics Rendering Workshop 1999, June 1999.

[7] J. Kautz and H-P. Seidel. Towards Interactive Bump Mapping with Anisotropic
Shift-Variant BRDFs. 2000 SIGGRAPH / Eurographics Workshop on Graphics
Hardware, pages 51–58, August 2000.

[8] K. Nishino, Y. Sato, and K. Ikeuchi. Appearance Compression and Synthesis
based on 3D Model for Mixed Reality. In International Conference on Computer
Vision, pages 38–45, 1999.

[9] W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery. Numerical
Recipes: The Art of Scientific Computing, 2nd Ed. Cambridge University Press,
1992.

[10] D. N. Wood, D. I. Azuma, K. Aldinger, B. Curless, T. Duchamp, D. H. Salesin,
and W. Stuetzle. Surface Light Fields for 3D Photography. Proceedings of SIG-
GRAPH 2000, pages 287–296, July 2000.

Permission
personal o
not made o
bear this n
republish,
specific p
© 1996 A

The Lumigraph

Steven J. Gortler
Microsoft Research

Radek Grzeszczuk
University of Toronto�

Richard Szeliski
Microsoft Research

Michael F. Cohen
Microsoft Research
Abstract

This paper discusses a new method for capturing the complete ap-
pearanceof both synthetic and real world objects and scenes, repres-
enting this information, and then using this representation to render
images of the object from new camera positions. Unlike the shape
capture process traditionally used in computer vision and the render-
ing process traditionally used in computer graphics, our approach
does not rely on geometric representations. Instead we sample and
reconstruct a 4D function, which we call a Lumigraph. The Lu-
migraph is a subsetof the complete plenoptic function that describes
the flow of light at all positions in all directions. With the Lu-
migraph, new images of the object can be generated very quickly, in-
dependent of the geometric or illumination complexity of the scene
or object. The paper discusses a complete working system includ-
ing the capture of samples, the construction of the Lumigraph, and
the subsequent rendering of images from this new representation.

1 Introduction

The process of creating a virtual environment or object in computer
graphics begins with modeling the geometric and surface attributes
of the objects in the environment along with any lights. An image
of the environment is subsequently rendered from the vantage point
of a virtual camera. Great effort has been expendedto develop com-
puter aided design systems that allow the specification of complex
geometry and material attributes. Similarly, a great deal of work has
been undertaken to produce systems that simulate the propagation of
light through virtual environments to create realistic images.

Despite these efforts, it has remained difficult or impossible to
recreate much of the complex geometry and subtle lighting effects
found in the real world. The modeling problem can potentially be
bypassed by capturing the geometry and material properties of ob-
jects directly from the real world. This approach typically involves
some combination of cameras, structured light, range finders, and
mechanical sensing devices such as 3D digitizers. When success-
ful, the results can be fed into a rendering program to create images
of real objects and scenes. Unfortunately, these systems are still un-
able to completely capture small details in geometry and material
properties. Existing rendering methods also continue to be limited
in their capability to faithfully reproduce real world illumination,
even if given accurate geometric models.

�Work performed while visiting Microsoft Research.
 to make digital or hard copies of part or all of this work or
r classroom use is granted without fee provided that copies are
r distributed for profit or commercial advantage and that copies

otice and the full citation on the first page. To copy otherwise, to
to post on servers, or to redistribute to lists, requires prior

ermission and/or a fee.
CM-0-89791-746-4/96/008...$3.50

43
Quicktime VR [6] was one of the first systems to suggest that the
traditional modeling/rendering process can be skipped. Instead, a
series of captured environment maps allow a user to look around a
scene from fixed points in space. One can also flip through differ-
ent views of an object to create the illusion of a 3D model. Chen and
Williams [7] and Werner et al [30] have investigated smooth inter-
polation between images by modeling the motion of pixels (i.e., the
optical flow) as one moves from one camera position to another. In
Plenoptic Modeling [19], McMillan and Bishop discuss finding the
disparity of each pixel in stereo pairs of cylindrical images. Given
the disparity (roughly equivalent to depth information), they can
then move pixels to create images from new vantage points. Similar
work using stereo pairs of planar images is discussed in [14].

This paper extends the work begun with Quicktime VR and Plen-
optic Modeling by further developing the idea of capturing the com-
plete flow of light in a region of the environment. Such a flow is de-
scribed by a plenoptic function[1]. The plenoptic function is a five
dimensional quantity describing the flow of light at every 3D spa-
tial position (x; y; z) for every 2D direction (�; �). In this paper,
we discuss computational methods for capturing and representing
a plenoptic function, and for using such a representation to render
images of the environment from any arbitrary viewpoint.

Unlike Chen and Williams’ view interpolation [7] and McMil-
lan and Bishop’s plenoptic modeling [19], our approach does not
rely explicitly on any optical flow information. Such information
is often difficult to obtain in practice, particularly in environments
with complex visibility relationships or specular surfaces. We do,
however, use approximate geometric information to improve the
quality of the reconstruction at lower sampling densities. Previous
flow basedmethods implicitly rely on diffuse surface reflectance, al-
lowing them to use a pixel from a single image to represent the ap-
pearanceof a single geometric location from a variety of viewpoints.
In contrast, our approach regularly samples the full plenoptic func-
tion and thus makes no assumptions about reflectance properties.

If we consider only the subset of light leaving a bounded ob-
ject (or equivalently entering a bounded empty region of space),
the fact that radiance along any ray remains constant1 allows us to
reduce the domain of interest of the plenoptic function to four di-
mensions. This paper first discusses the representation of this 4D
function which we call a Lumigraph. We then discuss a system
for sampling the plenoptic function with an inexpensive hand-held
camera, and “developing” the captured light into a Lumigraph. Fi-
nally this paper describes how to use texture mapping hardware to
quickly reconstruct images from any viewpoint with a virtual cam-
era model. The Lumigraph representation is applicable to synthetic
objects as well, allowing us to encode the complete appearance of
a complex model and to rerender the object at speeds independent
of the model complexity. We provide results on synthetic and real
sequences and discuss work that is currently underway to make the
system more efficient.

1We are assuming the medium (i.e., the air) to be transparent.

2 Representation

2.1 From 5D to 4D

The plenoptic function is a function of 5 variables representing po-
sition and direction 2 . If we assume the air to be transparent then
the radiance along a ray through empty space remains constant. If
we furthermore limit our interest to the light leaving the convex hull
of a bounded object, then we only need to represent the value of the
plenoptic function along some surface that surrounds the object. A
cube was chosen for its computational simplicity (see Figure 1). At
any point in space, one can determine the radiance along any ray in
any direction, by tracing backwards along that ray through empty
space to the surface of the cube. Thus, the plenoptic function due to
the object can be reduced to 4 dimensions 3.

The idea of restricting the plenoptic function to some surround-
ing surface has been used before. In full-parallax holographic ste-
reograms [3], the appearance of an object is captured by moving a
camera along some surface (usually a plane) capturing a 2D array of
photographs. This array is then transferred to a single holographic
image, which can display the appearanceof the 3D object. The work
reported in this paper takes many of its concepts from holographic
stereograms.

Global illumination researchers have used the “surface restric-
ted plenoptic function” to efficiently simulate light-transfer between
regions of an environment containing complicated geometric ob-
jects. The plenoptic function is represented on the surface of a cube
surrounding some region; that information is all that is needed to
simulate the light transfer from that region of space to all other re-
gions [17]. In the context of illumination engineering, this idea has
been used to model and represent the illumination due to physical
luminaires. Ashdown [2] describes a gantry for moving a camera
along a sphere surrounding a luminaire of interest. The captured in-
formation can then be used to represent the light source in global
illumination simulations. Ashdown traces this idea of the surface-
restricted plenoptic function back to Levin [15].

A limited version of the work reported here has been described
by Katayama et al. [11]. In their system, a camera is moved along a
track, capturing a 1D array of images of some object. This inform-
ation is then used to generate new images of the object from other
points in space. Because they only capture the plenoptic function
along a line, they only obtain horizontal parallax, and distortion is
introduced as soon as the new virtual camera leaves the line. Finally,
in work concurrent to our own, Levoy and Hanrahan [16] represent
a 4D function that allows for undistorted, full parallax views of the
object from anywhere in space.

2.2 Parameterization of the 4D Lumigraph

There are many potential ways to parameterize the four dimensions
of the Lumigraph. We adopt a parameterization similar to that used
in digital holographic stereograms [9] and also used by Levoy and
Hanrahan [16]. We begin with a cube to organize a Lumigraph
and, without loss of generality, only consider for discussion a single
square face of the cube (the full Lumigraph is constructed from six
such faces).

2We only consider a snapshot of the function, thus time is eliminated.
Without loss of generality, we also consider only a monochromatic func-
tion (in practice 3 discrete color channels), eliminating the need to consider
wavelength. We furthermore ignore issues of dynamic range and thus limit
ourselves to scalar values lying in some finite range.

3In an analogous fashion one can reconstruct the complete plenoptic
function inside an empty convex region by representing it only on the sur-
face bounding the empty region. At any point inside the region, one can find
the light entering from any direction by finding that direction’s intersection
with the region boundary.
44
s

t

Figure 1: The surface of a cube holds all the radiance information
due to the enclosed object.

2D Slice of 4D Space ray space in 2D

s
ray(s,t,u,v)

u

s

u

s ray(s,u)

u

s

ray(s,u)
s

u

t

u

v

z
(s,t)

(u,v)

4D parameterization
of rays

(a)

(b) (c)

Figure 2: Parameterization of the Lumigraph

We choose a simple parameterization of the cube face with or-
thogonal axes running parallel to the sides labeled s and t (see Fig-
ure 1). Direction is parameterized using a second plane parallel to
the st plane with axes labeled u and v (Figure 2). Any point in the
4D Lumigraph is thus identified by its four coordinates (s; t; u; v),
the coordinates of a ray piercing the first plane at (s; t) and intersect-
ing the second plane at (u; v) (see Ray(s; t; u; v) in Figure 2). We
place the origin at the center of the uv plane, with the z axis normal
to the plane. The st plane is located at z = 1. The full Lumigraph
consists of six such pairs of planes with normals along the x,�x, y,
�y, z, and �z directions.

It will be instructive at times to consider two 2D analogs to the
4D Lumigraph. Figure 2(b) shows a 2D slice of the 4D Lumigraph
that indicates the u and s axes. Figure 2(c) shows the same arrange-
ment in 2D ray coordinates in which rays are mapped to points (e.g.,
ray(s; u)) and points are mapped to lines.4

Figure 3 shows the relationship between this parameterization of
the Lumigraph and a pixel in some arbitrary image. Given a Lu-

4More precisely, a line in ray space represents the set of rays through a
point in space.

s

t

u

v

(s,t)

(u,v)

Camera center

Image plane

 pixel

Figure 3: Relationship between Lumigraph and a pixel in an arbit-
rary image

migraph, L, one can generate an arbitrary new image coloring each
pixel with the appropriate value L(s; t;u; v). Conversely given
some arbitrary image and the position and orientation of the cam-
era, each pixel can be considered a sample of the Lumigraph value
at (s; t; u; v) to be used to construct the Lumigraph.

There are many advantages of the two parallel plane parameter-
ization. Given the geometric description of a ray, it is computation-
ally simple to compute its coordinates; one merely finds its intersec-
tion with two planes. Moreover, reconstruction from this paramet-
erization can be done rapidly using the texture mapping operations
built into hardware on modern workstations (see section 3.6.2). Fi-
nally, in this parameterization, as one moves an eyepoint along the
st plane in a straight line, the projection on the uv plane of points on
the geometric object track along parallel straight lines. This makes it
computationally efficient to compute the apparent motion of a geo-
metric point (i.e., the optical flow), and to apply depth correction to
the Lumigraph.

2.3 Discretization of the 4D Parameterization

So far, the Lumigraph has been discussed as an unknown, con-
tinuous, four dimensional function within a hypercubical domain
in s; t; u; v and scalar range. To map such an object into a com-
putational framework requires a discrete representation. In other
words, we must choose some finite dimensional function space
within which the function resides. To do so, we choose a discrete
subdivision in each of the (s; t; u; v) dimensions and associate a
coefficient and a basis function (reconstruction kernel) with each 4D
grid point.

ChoosingM subdivisions in the s and t dimensions andN subdi-
visions in u and v results in a grid of points on the st and uv planes
(Figure 4). An st grid point is indexed with (i; j) and is located
at (si; tj). A uv grid point is indexed with (p; q) and is located at
(up; vq). A 4D grid point is indexed (i; j; p; q). The data value (in
fact an RGB triple) at this grid point is referred to as xi;j;p;q

2.3.1 Choice of Basis

We associate with each grid point a basis function Bi;j;p;q so that
the continuous Lumigraph is reconstructed as the linear sum

~L(s; t; u; v) =

MX
i=0

MX
j=0

NX
p=0

NX
q=0

xi;j;p;qBi;j;p;q (s; t; u; v)

where ~L is a finite dimensional Lumigraph that exists in the space
defined by the choice of basis.
45
s

u

si

up
GridPoint(i,p) s

u

si

up

GridPoint(i,j,p,q)

s

t

u

v

(i,j)

(p,q)

si

tj

up

4D

2D 2D Ray Space

Figure 4: Discretization of the Lumigraph

For example, if we select constant basis functions (i.e., a 4D box
with value 1 in the 4D region closest to the associated grid point
and zero elsewhere), then the Lumigraph is piecewise constant, and
takes on the value of the coefficient of the nearest grid point.

Similarly, a quadralinearbasis function has a value of 1 at the grid
point and drops off to 0 at all neighboring grid points. The value
of ~L(s; t; u; v) is thus interpolated from the 16 grid points forming
the hypercube in which the point resides.

We have chosen to use the quadralinear basis for its computa-
tional simplicity and the C0 continuity it imposes on ~L. However,
because this basis is not band limited by the Nyquist frequency, and
thus the corresponding finite dimensional function space is not shift
invariant [24], the grid structure will be slightly noticeable in our
results.

2.3.2 Projection into the Chosen Basis

Given a continuous Lumigraph,L, and a choice of basis for the finite
dimensional Lumigraph, ~L, we still need to define a projection of
L into ~L (i.e., we need to find the coefficients x that result in an ~L
which is by some metric closest to L). If we choose the L2 distance
metric, then the projection is defined by integrating L against the
duals of the basis functions [8], given by the inner products,

xi;j;p;q =< L; ~Bi;j;p;q > (1)

In the case of the box basis,B = ~B. The duals of the quadralinear
basis functions are more complex, but these basis functions suffi-
ciently approximate their own duals for our purposes.

One can interpret this projection as point sampling L after it has
been low pass filtered with the kernel ~B. This interpretation is pur-
sued in the context of holographic stereograms by Halle [9]. One
can also interpret this projection as the result of placing a physical
or synthetic “skewed” camera at grid point (si; tj) with an aper-
ture corresponding to the bilinear basis and with a pixel centered at

object

(b)

0 1... M−1

u

s

0 1 2... N−1

0 1... M−1

0 1 2... N−1

object

(a)

object

Figure 5: Choice of resolution on the uv plane

(up; vq) antialiased with a bilinear filter. This analogy is pursued in
[16].

In Figure 16 we show images generated from Lumigraphs. The
geometric scene consisted of a partial cube with the pink face in
front, yellow face in back, and the brown face on the floor. These
Lumigraphs were generated using two different quadrature meth-
ods to approximate equation 1, and using two different sets of basis
functions, constant and quadralinear. In (a) and (c) only one sample
was used to compute each Lumigraph coefficient. In these examples
severe ghosting artifacts can be seen. In (b) and (d) numerical integ-
ration over the support of ~B in stwas computed for each coefficient.
It is clear that best results are obtained using quadralinearbasis func-
tion, with a full quadrature method.

2.3.3 Resolution

An important decision is how to set the resolutions,M and N , that
best balance efficiency and the quality of the images reconstructed
from the Lumigraph. The choices for M and N are influenced by
the fact that we expect the visible surfaces of the object to lie closer
to the uv plane than the st plane. In this case, N , the resolution
of the uv plane, is closely related to the final image resolution and
thus a choice for N close to final image resolution works best (we
consider a range of resolutions from 128 to 512).

One can gain some intuition for the choice of M by observing the
2D subset of the Lumigraph from a single grid point on the uv plane
(seeu = 2 in Figure 5(a)). If the surface of the object lies exactly on
the uv plane at a gridpoint, then all rays leaving that point represent
samples of the radiance function at a single position on the object’s
surface. Even when the object’s surface deviates from the uv plane
as in Figure 5(b), we can still expect the function across the st plane
to remain smooth and thus a low resolution is sufficient. Thus a sig-
nificantly lower resolution for M than N can be expected to yield
good results. In our implementation we use values of M ranging
from 16 to 64.

2.3.4 Use of Geometric Information

Assuming the radiance function of the object is well behaved,know-
ledge about the geometry of the object gives us information about
the coherenceof the associatedLumigraph function, and can be used
to help define the shape of our basis functions.

Consider the ray (s;u) in a two-dimensional Lumigraph (Fig-
ure 6). The closest grid point to this ray is (si+1; up). However,
gridpoints (si+1; up�1) and (si; up+1) are likely to contain values
closer to the true value at (s; u) since these grid points represent
rays that intersect the object nearby the intersection with (s; u). This
suggests adapting the shape of the basis functions.

Supposewe know the depth value z at which ray (s; u) first inter-
sects a surface of the object. Then for a given si, one can compute a
corresponding u0 for a ray (si; u

0) that intersects the same geomet-
46
u

s

uu"

z

Z=0

Z=1

z

1−z

s

u’

si si+1

 up up+1

Ray(s,u)

up−1

ray space

u

s

si

si+1

up−1 up up+1

u

 s

u’u"

Figure 6: Depth correction of rays

u

v

s

Figure 7: An (s; u; v) slice of a Lumigraph

ric location on the object as the original ray (s; u)5 . Let the depth
z be 0 at the uv plane and 1 at the st plane. The intersections can
then be found by examining the similar triangles in Figure 6,

u0 = u + (s� si) z

1�z (2)

It is instructive to view the same situation as in Figure 6(a), plot-
ted in ray space (Figure 6(b)). In this figure, the triangle is the ray
(s; u), and the circles indicate the nearby gridpoints in the discrete
Lumigraph. The diagonal line passing through (s; u) indicates the
optical flow (in this case, horizontal motion in 2D) of the intersection
point on the object as one moves back and forth in s. The intersec-
tion of this line with si and si+1 occurs at u0 and u00 respectively.

Figure 7 shows an (s; u) slice through a three-dimensional
(s; u; v) subspace of the Lumigraph for the ray-traced fruitbowl
used in Figure 19. The flow of pixel motion is along straight lines in
this space, but more than one motion may be present if the scene in-
cludes transparency. The slope of the flow lines corresponds to the
depth of the point on the object tracing out the line. Notice how the
function is coherent along these flow lines [4].

We expect the Lumigraph to be smooth along the optical flow
lines, and thus it would be beneficial to have the basis functions ad-
apt their shape correspondingly. The remapping ofu andv values to
u0 and v0 performs this reshaping. The idea of shaping the support
of basis functions to closely match the structure of the function be-
ing approximated is used extensively in finite element methods. For
example, in the Radiosity method for image synthesis, the mesh of
elements is adapted to fit knowledgeabout the illumination function.

5Assuming there has been no change in visibility.

!!!!!!!
!!!!!!!
!!!!!!!
!!!!!!!

u

s

object

!!!!!!!
!!!!!!!
!!!!!!!
!!!!!!!

u

s

object

s

u

(a)

(b)

(c)

Figure 8: (a) Support of an uncorrected basis function. (b) Support
of a depth corrected basis function. (c) Support of both basis func-
tions in ray space.

The new basis function B0

i;j;p;q (s; t;u; v) is defined by first
finding u0 and v0 using equation 2 and then evaluating B, that is

B
0

i;j;p;q(s; t; u; v) = Bi;j;p;q(s; t; u
0

; v
0)

Although the shape of the new depth corrected basis is complic-
ated, ~L(s; t;u; v) is still a linear sum of coefficients and the weights
of the contributing basis functions still sum to unity. However, the
basis is no longer representable as a tensor product of simple boxes
or hats as before. Figure 8 shows the supportof an uncorrected (light
gray) and a depth corrected (dark gray) basis function in 2D geomet-
ric space and in 2D ray space. Notice how the support of the depth
corrected basis intersects the surface of the object across a narrower
area compared to the uncorrected basis.

We use depth corrected quadralinear basis functions in our sys-
tem. The value of ~L(s; t; u; v) in the corrected quadralinear basis is
computed using the following calculation:

QuadralinearDepthCorrect(s,t,u,v,z)
Result = 0
hst = s1 � s0 /* grid spacing */
huv = u1 � u0
for each of the four (si; tj) surrounding (s; t)

u0 = u+ (s� si) � z=(1� z)
v0 = v + (t� tj) � z=(1� z)
temp = 0
for each of the four (up; vq) surrounding (u0; v0)

iterpWeight
uv

=
(huv� j up � u0 j) � (huv� j vq � v0 j)=h2uv

temp+= interpWeight
uv

� L(si; tj ; up; vq)
interpWeight

st
=

(hst� j si � s j) � (hst� j tj � t j)=h2st
Result += interpWeight

st
� temp

return Result

Figure 17 shows images generated from a Lumigraph using un-
corrected and depth corrected basis functions. The depth correction
was done using a 162 polygon model to approximate the original
70,000 polygons. The approximation was generated using a mesh
simplification program [10]. These images show how depth correc-
tion reduces the artifacts present in the images.

3 The Lumigraph System

This section discusses many of the practical implementation issues
related to creating a Lumigraph and generating images from it. Fig-
ure 9 shows a block diagram of the system. The process begins with
capturing images with a hand-held camera. From known markers
47
Capture Rebin Compress
Reconstruct

Images

Segment
Object

Create
Geometry

Figure 9: The Lumigraph system

in the image, the camera’s position and orientation (its pose) is es-
timated. This provides enough information to create an approxim-
ate geometric object for use in the depth correction of (u; v) values.
More importantly, each pixel in each image acts as a sample of the
plenoptic function and is used to estimate the coefficients of the dis-
crete Lumigraph (i.e., to develop the Lumigraph). Alternatively, the
Lumigraph of a synthetic object can be generated directly by integ-
rating a set of rays cast in a rendering system. We only briefly touch
on compression issues. Finally, given an arbitrary virtual camera,
new images of the object are quickly rendered.

3.1 Capture for Synthetic Scenes

Creating a Lumigraph of a synthetic scene is straightforward. A
single sample per Lumigraph coefficient can be captured for each
gridpoint (i; j) by placing the center of a virtual pin hole camera at
(si; tj) looking down the z axis, and defining the imaging frustum
using the uv square as the film location. Rendering an image us-
ing this skewed perspective camera produces the Lumigraph coeffi-
cients. The pixel values in this image, indexed (p; q), are used as the
Lumingraph coefficientsxi;j;p;q . To perform the integration against
the kernel ~B, multiple rays per coefficient can be averaged by jit-
tering the camera and pixel locations, weighting each image using
~B. For ray traced renderings, we have used the ray tracing program
provided with the Generative Modeling package[25].

3.2 Capture for Real Scenes

Computing the Lumigraph for a real object requires the acquisition
of object images from a large number of viewpoints. One way in
which this can be accomplished is to use a special motion control
platform to place the real camera at positions and orientations coin-
cident with the (si; tj) gridpoints [16]. While this is a reasonable
solution, we are interested in acquiring the images with a regular
hand-held camera. This results in a simpler and cheaper system, and
may extend the range of applicability to larger scenes and objects.

To achieve this goal, we must first calibrate the camera to determ-
ine the mapping between directions and image coordinates. Next,
we must identify special calibration markers in each image and
compute the camera’s pose from these markers. To enable depth-
corrected interpolation of the Lumigraph, we also wish to recover
a rough geometric model of the object. To do this, we convert each
input image into a silhouette using a blue-screen technique, and then
build a volumetric model from these binary images.

3.2.1 Camera Calibration and Pose Estimation

Camera calibration and pose estimation can be thought of as two
parts of a single process: determining a mapping between screen
pixels and rays in the world. The parameters associated with this
process naturally divide into two sets: extrinsic parameters, which
define the camera’s pose (a rigid rotation and translation), and in-
trinsic parameters, which define a mapping of 3D camera coordin-
ates onto the screen. This latter mapping not only includes a per-
spective (pinhole) projection from the 3D coordinates to undistorted

Figure 10: The capture stage

image coordinates, but also a radial distortion transformation and a
final translation and scaling into screen coordinates [29, 31].

We use a camera with a fixed lens, thus the intrinsic parameters
remain constant throughout the process and need to be estimated
only once, before the data acquisition begins. Extrinsic parameters,
however, change constantly and need to be recomputed for each new
video frame. Fortunately, given the intrinsic parameters, this can be
done efficiently and accurately with many fewer calibration points.
To compute the intrinsic and extrinsic parameters, we employ an al-
gorithm originally developed by Tsai [29] and extended by Willson
[31].

A specially designed stage provides the source of calibration data
(see Figure 10). The stage has two walls fixed together at a right
angle and a base that can be detached from the walls and rotated in
90 degree increments. An object placed on such a movable base
can be viewed from all directions in the upper hemisphere. The
stage background is painted cyan for later blue-screen processing.
Thirty markers, each of which consists of several concentric rings
in a darker shade of cyan, are distributed along the sides and base.
This number is sufficiently high to allow for a very precise intrinsic
camera calibration. During the extrinsic camera calibration, only 8
or more markers need be visible to reliably compute a pose.

Locating markers in each image is accomplishedby first convert-
ing the image into a binary (i.e., black or white) image. A double
thresholding operator divides all image pixels into three groups sep-
arated by intensity thresholds T1 and T2. Pixels with an intensity
below T1 are considered black, pixels with an intensity above T2
are considered white. Pixels with an intensity between T1 and T2
are considered black only if they have a black neighbor, otherwise
they are considered white. The binary thresholded image is then
searched for connected components [23]. Sets of connected com-
ponents with similar centers of gravity are the likely candidates for
the markers. Finally, the ratio of radii in each marker is used to
uniquely identify the marker. To help the user correctly sample the
viewing space, a real-time visual feedback displays the current and
past locations of the camera in the view space (Figure 11). Marker
tracking, pose estimation, feedback display, and frame recording
takes approximately 1/2 second per frame on an SGI Indy.

3.3 3D Shape Approximation

The recovery of 3D shape information from natural imagery has
long been a focus of computer vision research. Many of these tech-
niques assume a particularly simple shape model, for example, a
polyhedral scenewhere all edgesare visible. Other techniques, such
as stereo matching, produce sparse or incomplete depth estimates.
To produce complete, closed 3D models, several approaches have
been tried. One family of techniques builds 3D volumetric models
48
Figure 11: The user interface for the image capture stage displays
the current and previous camera positions on a viewing sphere. The
goal of the user is to “paint” the sphere.

Figure 12: Segmented image plus volume construction

directly from silhouettes of the object being viewed [21]. Another
approach is to fit a deformable 3D model to sparse stereo data. Des-
pite over 20 years of research, the reliable extraction of accurate 3D
geometric information from imagery (without the use of active illu-
mination and positioning hardware) remains elusive.

Fortunately, a rough estimate of the shape of the object is enough
to greatly aid in the capture and reconstruction of images from a Lu-
migraph. We employ the octree construction algorithm described
in [26] for this process. Each input image is first segmented into a
binary object/background image using a blue-screen technique [12]
(Figure 12). An octree representation of a cube that completely en-
closes the object is initialized. Then for each segmented image, each
voxel at a coarse level of the octree is projected onto the image plane
and tested against the silhouette of the object. If a voxel falls outside
of the silhouette, it is removed from the tree. If it falls on the bound-
ary, it is marked for subdivision into eight smaller cubes. After a
small number of images are processed, all marked cubes subdivide.
The algorithm proceeds for a preset number of subdivisions, typic-
ally 4. The resulting 3D model consists of a collection of voxels de-
scribing a volume which is known to contain the object6 (Figure 12).
The external polygons are collected and the resulting polyhedron is
then smoothed using Taubin’s polyhedral smoothing algorithm [27].

3.4 Rebinning

As described in Equation 1, the coefficient associated with the basis
function Bi;j;p;q is defined as the integral of the continuous Lu-
migraph function multiplied by some kernel function ~B. This can
be written as

xi;j;p;q =

Z
L(s; t; u; v) ~Bi;j;p;q (s; t; u; v)ds dt du dv (3)

In practice this integral must be evaluated using a finite number of
samples of the function L. Each pixel in the input video stream
coming from the hand-held camera represents a single sample

6Technically, the volume is a superset of the visual hull of the object [13].

L(sk; tk; uk; vk), of the Lumigraph function. As a result, the
sample points in the domain cannot be pre-specified or controlled.
In addition, there is no guarantee that the incoming samples are
evenly spaced.

Constructing a Lumigraph from these samples is similar to the
problem of multidimensional scattered data approximation. In the
Lumigraph setting, the problem is difficult for many reasons. Be-
cause the samples are not evenly spaced, one cannot apply stand-
ard Fourier-based sampling theory. Because the number of sample
points may be large (� 108) and because we are working in a 4 di-
mensional space, it is too expensive to solve systems of equations
(as is done when solving thin-plate problems [28, 18]) or to build
spatial data structures (such as Delauny triangulations).

In addition to the number of sample points, the distribution of the
data samples have two qualities that make the problem particularly
difficult. First, the sampling density can be quite sparse, with large
gaps in many regions. Second, the sampling density is typically very
non-uniform.

The first of these problems has been addressed in a two dimen-
sional scattered data approximation algorithm describedby Burt [5].
In his algorithm, a hierarchical set of lower resolution data sets is
created using an image pyramid. Each of these lower resolutions
represents a “blurred” version of the input data; at lower resolutions,
the gaps in the data become smaller. This low resolution data is then
used to fill in the gaps at higher resolutions.

The second of these problems, the non-uniformity of the
sampling density, has been addressed by Mitchell [20]. He
solves the problem of obtaining the value of a pixel that has been
super-sampled with a non-uniform density. In this problem, when
averaging the sample values, one does not want the result to
be overly influenced by the regions sampled most densely. His
algorithm avoids this by computing average values in a number of
smaller regions. The final value of the pixel is then computed by
averaging together the values of these strata. This average is not
weighted by the number of samples falling in each of the strata.
Thus, the non-uniformity of the samples does not bias the answer.

For our problem, we have developed a new hierarchical al-
gorithm that combines concepts from both of these algorithms. Like
Burt, our method uses a pyramid algorithm to fill in gaps, and like
Mitchell, we ensure that the non-uniformity of the data does not bias
the “blurring” step.

For ease of notation, the algorithm is described in 1D, and will
use only one index i. A hierarchical set of basis functions is used,
with the highest resolution labeled0 and with lower resolutions hav-
ing higher indices. Associated with each coefficientxri at resolution
r is a weight wr

i . These weights determine how the coefficients at
different resolution levels are eventually combined. The use of these
weights is the distinguishing feature of our algorithm.

The algorithm proceeds in three phases. In the first phase, called
splat, the sample data is used to approximate the integral of Equa-
tion 3, obtaining coefficients x0i and weights w0

i . In regions where
there is little or no nearby sample data, the weights are small or zero.
In the second phase, called pull, coefficients are computed for basis
functions at a hierarchical set of lower resolution grids by combin-
ing the coefficient values from the higher resolution grids. In the
lower resolution grids, the gaps (regions where the weights are low)
become smaller (see figure 13). In the third phase, called push, in-
formation from the each lower resolution grid is combined with the
next higher resolution grid, filling in the gaps while not unduly blur-
ring the higher resolution information already computed.

3.4.1 Splatting

In the splatting phase, coefficients are computed by performing
Monte-Carlo integration using the following weighted average es-
49
Figure 13: 2D pull-push. At lower resolutions the gaps are smaller.

timator:
w0
i =

P
k

~Bi(sk)

x0i = 1

w0
i

P
k

~Bi(sk)L(sk)
(4)

where sk denotes the domain location of sample k. If w0
i is 0, then

the x0i is undefined. If the ~Bi have compact support, then each
sample influences only a constant number of coefficients. There-
fore, this step runs in time linear in the number of samples.

If the sample points sk are chosen from a uniform distribution,
this estimator converges to the correct value of the integral in Equa-
tion (3), and for n sample points has a variance of approximately
1

n

R �
~Bi(s)L(s)� xi ~Bi(s)

�2
ds. This variance is similar to that

obtained using importance sampling, which is often much smaller
than the crude Monte Carlo estimator. For a full analysis of this es-
timator, see [22].

3.4.2 Pull

In the pull phase, lower resolution approximations of the function
are derived using a set of wider kernels. These wider kernels are
defined by linearly summing together the higher resolution kernels
(~Br+1

i
=
P

k

~hk�2i ~B
r

k
) using some discrete sequence ~h. For lin-

ear “hat” functions, ~h[�1::1] is f 1
2
; 1; 1

2
g

The lower resolution coefficients are computed by combining the
higher resolution coefficients using ~h. One way to do this would be
to compute

wr+1

i
=

P
k

~hk�2i w
r

k

xr+1
i

= 1

w
r+1

i

P
k

~hk�2i w
r

k x
r

k

(5)

It is easy to see that this formula, which corresponds to the method
used by Burt, computes the same result as would the original estim-
ator (Equation (4)) applied to the wider kernels. Once again, this
estimator works if the sampling density is uniform. Unfortunately,
when looking on a gross scale, it is imprudent to assume that the data
is sampled uniformly. For example, the user may have held the cam-
era in some particular region for a long time. This non-uniformity
can greatly bias the estimator.

Our solution to this problem is to apply Mitchell’s reasoning to
this context, replacing Equation (5) with:

wr+1

i
=

P
k

~hk�2i min(wr

k; 1)

xr+1
i

= 1

w
r+1

i

P
k

~hk�2i min(wr

k; 1)x
r

k

The value 1 represents full saturation7, and the min operator is used
to place an upper bound on the degree that one coefficient in a highly

7Using the value 1 introduces no loss of generality if the normalization
of ~h is not fixed.

sampled region, can influence the total sum 8.
The pull stage runs in time linear in the number of basis function

summed over all of the resolutions. Because each lower resolution
has half the density of basis functions, this stage runs in time linear
in the number of basis functions at resolution 0.

3.4.3 Push

During the push stage, the lower resolution approximation is used to
fill in the regions in the higher resolution that have low weight 9 . If a
higher resolution coefficient has a high associated confidence (i.e.,
has weight greater than one), we fully disregard the lower resolu-
tion information there. If the higher resolution coefficient does not
have sufficient weight, we blend in the information from the lower
resolution.

To blend this information, the low resolution approximation of
the function must be expressed in the higher resolution basis. This is
done by upsampling and convolving with a sequenceh, that satisfies
Br+1

i
=
P

k
hk�2iB

r

k .
We first compute temporary values

twr

i =
P

k
hi�2k min(wr+1

k
; 1)

txri = 1

tw
r

i

P
k
hi�2k min(wr+1

k
; 1) xr+1

k

These temporary values are now ready to be blended with the values
x and w values already at level r.

x
r

i = tx
r

i (1�w
r

i) + w
r

i x
r

i

w
r

i = tw
r

i (1�w
r

i) + w
r

i

This is analogous to the blending performed in image compositing.

3.4.4 Use of Geometric Information

This three phase algorithm must be adapted slightly when using the
depth corrected basis functions B0. During the splat phase, each
sample rayL(sk; tk; uk; vk)must have its u and v values remapped
as explained in Section 2.3.4. Also, during the push and pull phases,
instead of simply combining coefficients using basis functions with
neighboring indices, depth corrected indices are used.

3.4.5 2D Results

The validity of the algorithm was tested by first applying it to a
2D image. Figure 18 (a) shows a set of scattered samples from the
well known mandrill image. The samples were chosen by picking
256 random line segments and sampling the mandrill very densely
along these lines 10. Image (b) shows the resulting image after the
pull/push algorithm has been applied. Image (c) and (d) show the
same process but with only 100 sample lines. The success of our al-
gorithm on both 2D image functions and 4D Lumigraph functions
leads us to believe that it may have many other uses.

3.5 Compression

A straightforward sampling of the Lumigraph requires a large
amount of storage. For the examples shown in section 4, we use,
for a single face, a 32� 32 sampling in (s; t) space and 256� 256

8This is actually less extreme that Mitchell’s original algorithm. In this
context, his algorithm would set all non-zero weights to 1.

9Variance measures could be used instead of weight as a measure of con-
fidence in this phase.
10We chose this type of sampling pattern because it mimics in many ways

the structure of the Lumigraph samples taken from a hand-held camera. In
that case each input video image is a dense sampling of the 4D Lumigraph
along a 2D plane.
50
(u; v) images. To store the six faces of our viewing cube with 24-
bits per pixel requires 322 � 2562 � 6 � 3 = 1:125GB of storage.

Fortunately, there is a large amount of coherence between
(s; t; u; v) samples. One could apply a transform code to the 4D ar-
ray, such as a wavelet transform or block DCT. Given geometric in-
formation, we can expect to do even better by considering the 4D ar-
ray as a 2D array of images. We can then predict new (u; v) images
from adjacent images, (i.e., images at adjacent (s; t) locations). In-
traframe compression issues are identical to compressing single im-
ages (a simple JPEG compression yields about a 20:1 savings). In-
terframe compression can take advantage of increased information
over other compressionmethods such as MPEG. Since we know that
the object is static and know the camera motion between adjacent
images, we can predict the motion of pixels. In addition, we can
leverage the fact that we have a 2D array of images rather than a
single linear video stream.

Although we have not completed a full analysis of compression
issues, our preliminary experiments suggest that a 200:1 compres-
sion ratio should be achievable with almost no degradation. This
reduces the storage requirements to under 6MB. Obviously, further
improvements can be expected using a more sophisticated predic-
tion and encoding scheme.

3.6 Reconstruction of Images

Given a desired camera (position, orientation, resolution), the re-
construction phase colors each pixel of the output image with the
color that this camera would create if it were pointed at the real ob-
ject.

3.6.1 Ray Tracing

Given a Lumigraph, one may generate a new image from an arbit-
rary camera pixel by pixel, ray by ray. For each ray, the correspond-
ing (s; t; u; v) coordinates are computed, the nearby grid points are
located, and their values are properly interpolated using the chosen
basis functions (see Figure 3).

In order to use the depth corrected basis functions given an ap-
proximate object, we transform the (u; v) coordinates to the depth
corrected (u0; v0) before interpolation. This depth correction of the
(u; v) values can be carried out with the aid of graphics hardware.
The polygonal approximation of the object is drawn from the point
of view and with the same resolution as the desired image. Each ver-
tex is assigned a red, green, blue value corresponding to its (x;y; z)
coordinate resulting in a “depth” image. The corrected depth value
is found by examining the blue value in the corresponding pixel of
the depth image for the �z-faces of the Lumigraph cube (or the red
or green values for other faces). This information is used to find u0

and v0 with Equation 2.

3.6.2 Texture mapping

The expense of tracing a ray for each pixel can be avoided by recon-
structing images using texture mapping operations. The st plane it-
self is tiled with texture mapped polygons with the textures defined
by slices of the Lumigraph: texi;j(up; vq) = xi;j;p;q . In other
words, we have one texture associated with each st gridpoint.

Constant Basis
Consider the case of constant basis functions. Suppose we wish

to render an image from the desired camera shown in Figure 14. The
set of rays passing through the shaded square on the st plane have
(s; t) coordinates closest to the grid point (i; j). Suppose that theuv
plane is filled with texi;j . Then, when using constant basis func-
tions, the shaded region in the desired camera’s film plane should
be filled with the corresponding pixels in the shaded region of the
uv plane. This computation can be accomplished by placing a vir-
tual camera at the desired location, drawing a square polygon on the

s

t

u

v

Desired Camera

(i,j)

(u,v)3
(u,v)2

(u,v)0 (u,v)1

Desired Image

Figure 14: Texture mapping a portion of the st plane

st plane, and texture mapping it using the four texture coordinates
(u; v)0, (u; v)1, (u; v)2, and (u; v)3 to index into texi;j .

Repeating this process for each grid point on the st plane and
viewing the result from the desired camera results in a complete re-
construction of the desired image. Thus, if one has an M � M
resolution for the st plane, one needs to draw at most M2 texture
mapped squares, requiring on average, only one ray intersection for
each square since the vertices are shared. Since many of the M2

squares on the st plane are invisible from the desired camera, typic-
ally only a small fraction of these squares need to be rendered. The
rendering cost is independent of the resolution of the final image.

Intuitively, you can think of the st plane as a piece of holographic
film. As your eye moves back and forth you see different things at
the same point in st since each point holds a complete image.

Quadralinear Basis
The reconstruction of images from a quadralinear basis Lu-

migraph can also be performed using a combination of texture map-
ping and alpha blending. In the quadralinear basis, the support of
the basis function at i; j covers a larger square on the st plane than
does the box basis (see Figure 15(a)). Although the regions do not
overlap in the constant basis, they do in the quadralinear basis. For
a given pixel in the desired image, values from 16 4D grid points
contribute to the final value.

The quadralinear interpolation of these 16 values can be carried
out as a sequence of bilinear interpolations, first in uv and then in
st. A bilinear basis function is shown in Figure 15(b) centered at
grid point (i; j). A similar basis would lie over each grid point in
uv and every grid point in st.

Texture mapping hardware on an SGI workstation can automatic-
ally carry out the bilinear interpolation of the texture in uv. Unfortu-
nately, there is no hardware support for the st bilinear interpolation.
We could approximate the bilinear pyramid with a linear pyramid by
drawing the four triangles shown on the floor of the basis function
in Figure 15(b). By assigning� values to each vertex (� = 1 at the
center, and � = 0 at the outer four vertices) and using alpha blend-
ing, the final image approximates the full quadralinear interpolation
with a linear-bilinear one. Unfortunately, such a set of basis func-
tions do not sum to unity which causes serious artifacts.

A different pyramid of triangles can be built that does sum
to unity and thus avoids these artifacts. Figure 15(c) shows a
hexagonal region associated with grid point (i; j) and an associated
linear basis function. We draw the six triangles of the hexagon with
� = 1 at the center and � = 0 at the outside six vertices11. The
linear interpolation of � values together with the bilinear interpol-
ation of the texture map results in a linear-bilinear interpolation. In
practice we have found it to be indistinguishable from the full quad-

11The alpha blending mode is set to perform a simple summation.
51
Desired Camera

Bilinear basis
centered at (i,j)

Linear Basis
centered at (i,j)

s

t

u

v

(i,j)(a)

(b)

(c)

3333
3333
3333

3333
3333
3333
3333

888
888
888
888888

888
888

Figure 15: Quadralinear vs. linear-bilinear

ralinear interpolation. This process requires at most 6M2 texture
mapped, �-blended triangles to be drawn.

Depth Correction
As before, the (u; v) coordinates of the vertices of the texture

mapped triangles can be depth corrected. At interior pixels, the
depth correction is only approximate. This is not valid when there
are large depth changes within the bounds of the triangle. There-
fore, we adaptively subdivide the triangles into four smaller ones by
connecting the midpoints of the sides until they are (a) smaller than
a minimum screen size or (b) have a sufficiently small variation in
depth at the three corners and center. The � values at intermediate
vertices are the average of the vertices of the parent triangles.

4 Results

We have implemented the complete system described in this paper
and have created Lumigraphs of both synthetic and actual objects.
For synthetic objects, Lumigraphs can be created either from poly-
gon rendered or ray traced images. Computing all of the necessary
images is a lengthy process often taking weeks of processing time.

For real objects, the capture is performed with an inexpensive,
single chip Panasonicanalog video camera. The capture phase takes
less than one hour. The captured data is then “developed” into a Lu-
migraph. This off-line processing, which includes segmenting the
image from its background,creating an approximate volumetric rep-
resentation, and rebinning the samples, takes less than one day of
processing on an SGI Indy workstation.

Once the Lumigraph has been created, arbitrary new images of
the object or scene can be generated. One may generate these new
images on a ray by ray basis, which takes a few seconds per frame
at 450�450 resolution. If one has hardware texture mapping avail-
able, then one may use the acceleration algorithm described in Sec-
tion 3.6.2. This texture mapping algorithm is able to create multiple
frames per second from the Lumigraph on an SGI Reality Engine.
The rendering speed is almost independent of the desired resolution
of the output images. The computational bottleneck is moving the
data from main memory to the smaller texture cache.

Figure 19 shows images of a synthetic fruit bowl, an actual fruit
bowl, and a stuffed lion, generated from Lumigraphs. No geometric
information was used in the Lumigraph of the synthetic fruit bowl.
For the actual fruit bowl and the stuffed lion, we have used the ap-
proximate geometry that was computed using the silhouette inform-
ation. These images can be generated in a fraction of a second, inde-
pendent of scene complexity. The complexity of both the geometry
and the lighting effects present in these images would be difficult to
achieve using traditional computer graphics techniques.

5 Conclusion

In this paper we have described a rendering framework based on
the plenoptic function emanating from a static object or scene. Our
method makes no assumptions about the reflective properties of the
surfaces in the scene. Moreover, this representation does not require
us to derive any geometric knowledge about the scene such as depth.
However, this method does allow us to include any geometric know-
ledge we may compute, to improve the efficiency of the representa-
tion and improve the quality of the results. We compute the approx-
imate geometry using silhouette information.

We have developed a system for capturing plenoptic data using a
hand-held camera, and converting this data into a Lumigraph using a
novel rebinning algorithm. Finally, we have developedan algorithm
for generating new images from the Lumigraph quickly using the
power of texture mapping hardware.

In the examples shown in this paper, we have not captured the
complete plenoptic function surrounding an object. We have limited
ourselves to only one face of a surrounding cube. There should be
no conceptualobstacles to extending this work to complete captures
using all six cube faces.

There is much future work to be done on this topic. It will be
important to develop powerful compression methods so that Lu-
migraphs can be efficiently stored and transmitted. We believe that
the large degree of coherence in the Lumigraph will make a high
rate of compression achievable. Future research also includes im-
proving the accuracy of our system to reduce the amount of arti-
facts in the images created by the Lumigraph. With these extensions
we believe the Lumigraph will be an attractive alternative to tradi-
tional methods for efficiently storing and rendering realistic 3D ob-
jects and scenes.

Acknowledgments

The authors would like to acknowledge the help and advice we re-
ceived in the conception, implementation and writing of this paper.
Thanks to Marc Levoy and Pat Hanrahan for discussions on issues
related to the 5D to 4D simplification, the two-plane parameteriz-
ation and the camera based aperture analog. Jim Kajiya and Tony
DeRose provided a terrific sounding board throughout this project.
The ray tracer used for the synthetic fruit bowl was written by John
Snyder. The mesh simplification code used for the bunny was writ-
ten by Hugues Hoppe. Portions of the camera capture code were im-
plemented by Matthew Turk. Jim Blinn, Hugues Hoppe, Andrew
Glassner and Jutta Joesch provided excellent editing suggestions.
Erynn Ryan is deeply thanked for her creative crisis management.
Finally, we wish to thank the anonymous reviewers who pointed us
toward a number of significant references we had missed.

References
[1] ADELSON, E. H., AND BERGEN, J. R. The plenoptic function and the elements

of early vision. In ComputationalModels of Visual Processing, Landy and Movs-
hon, Eds. MIT Press, Cambridge, Massachusetts, 1991, ch. 1.

[2] ASHDOWN, I. Near-field photometry: A new approach. Journal of the Illumin-
ation Engineering Society 22, 1 (1993), 163–180.

[3] BENTON, S. A. Survey of holographic stereograms. Proceedings of the SPIE
391 (1982), 15–22.

[4] BOLLES, R. C., BAKER, H. H., AND MARIMONT, D. H. Epipolar-plane im-
age analysis: An approach to determining structure from motion. International
Journal of Computer Vision 1 (1987), 7–55.

[5] BURT, P. J. Moment images, polynomial fit filters, and the problem of surface
interpolation. In Proceedings of Computer Vision and Pattern Recognition (June
1988), IEEE Computer Society Press, pp. 144–152.

[6] CHEN, S. E. Quicktime VR - an image-based approach to virtual environment
navigation. In Computer Graphics, Annual Conference Series, 1995, pp. 29–38.
52
[7] CHEN, S. E., AND WILLIAMS, L. View interpolation for image synthesis. In
Computer Graphics, Annual Conference Series, 1993, pp. 279–288.

[8] CHUI, C. K. An Introduction to Wavelets. Academic Press Inc., 1992.

[9] HALLE, M. W. Holographic stereograms as discrete imaging systems. Practical
Holography VIII (SPIE) 2176 (1994), 73–84.

[10] HOPPE, H. Progressive meshes. In Computer Graphics, Annual Conference
Series, 1996.

[11] KATAYAMA, A., TANAKA, K., OSHINO, T., AND TAMURA, H. A viewpoint
independent stereoscopic display using interpolation of multi-viewpoint images.
Steroscopic displays and virtal reality sytems II (SPIE) 2409 (1995), 11–20.

[12] KLINKER, G. J. A Physical Approach to Color Image Understanding. A K
Peters, Wellesley, Massachusetts, 1993.

[13] LAURENTINI, A. The visual hull concept for silhouette-based image understand-
ing. IEEE Transactions on Pattern Analysis and Machine Intelligence 16, 2 (Feb-
ruary 1994), 150–162.

[14] LAVEAU, S., AND FAUGERAS, O. 3-D scene representation as a collection of
images and fundamental matrices. Tech. Rep. 2205, INRIA-Sophia Antipolis,
February 1994.

[15] LEVIN, R. E. Photometriccharacteristics of light-controllingapparatus. Illumin-
ating Engineering 66, 4 (1971), 205–215.

[16] LEVOY, M., AND HANRAHAN, P. Light-field rendering. In Computer Graphics,
Annual Conference Series, 1996.

[17] LEWIS, R. R., AND FOURNIER, A. Light-driven global illumination with a
wavelet representation of light transport. UBC CS Technical Reports 95-28, Uni-
versity of British Columbia, 1995.

[18] LITWINOWICZ, P., AND WILLIAMS, L. Animating images with drawings. In
Computer Graphics, Annual Conference Series, 1994, pp. 409–412.

[19] MCMILLAN, L., AND BISHOP, G. Plenoptic modeling: An image-based render-
ing system. In Computer Graphics, Annual Conference Series, 1995, pp. 39–46.

[20] MITCHELL, D. P. Generatingantialiased images at low samplingdensities. Com-
puter Graphics 21, 4 (1987), 65–72.

[21] POTMESIL, M. Generating octree models of 3D objects from their silhouettes
in a sequence of images. Computer Vision, Graphics, and Image Processing 40
(1987), 1–29.

[22] POWELL, M. J. D., AND SWANN, J. Weighted uniformsampling - a monte carlo
technique for reducing variance. J. Inst. Maths Applics 2 (1966), 228–236.

[23] ROSENFELD, A., AND KAK, A. C. Digital Picture Processing. Academic Press,
New York, New York, 1976.

[24] SIMONCELLI, E. P., FREEMAN, W. T., ADELSON, E. H., AND HEEGER, D. J.
Shiftable multiscale transforms. IEEE Transactions on Information Theory 38
(1992), 587–607.

[25] SNYDER, J. M., AND KAJIYA, J. T. Generative modeling: A symbolic system
for geometric modeling. Computer Graphics 26, 2 (1992), 369–379.

[26] SZELISKI, R. Rapid octree construction from image sequences. CVGIP: Image
Understanding 58, 1 (July 1993), 23–32.

[27] TAUBIN, G. A signal processing approach to fair surface design. In Computer
Graphics, Annual Conference Series, 1995, pp. 351–358.

[28] TERZOPOULOS, D. Regularization of inverse visual problems involvingdiscon-
tinuities. IEEE PAMI 8, 4 (July 1986), 413–424.

[29] TSAI, R. Y. A versatile camera calibration technique for high-accuracy 3D ma-
chine vision metrologyusing off-the-shelf TV cameras and lenses. IEEE Journal
of Robotics and Automation RA-3, 4 (August 1987), 323–344.

[30] WERNER, T., HERSCH, R. D., AND HLAVAC, V. Rendering real-world objects
using view interpolation. In Fifth International Conference on Computer Vision
(ICCV’95) (Cambridge, Massachusetts, June 1995), pp. 957–962.

[31] WILLSON, R. G. Modeling and Calibration of Automated Zoom Lenses. PhD
thesis, Carnegie Mellon University, 1994.

	SESSION 0: Introduction--- Radek Grzeszczuk
	Contents
	Lecturer Biographies
	Lecturer Contact Information
	Course Introduction and Overview
	Course Schedule
	SLIDES: Introduction
	__

	SESSION 1: Basic Techniques of Registering Surface Light Fields --- Jean-Yves Bouguet
	SLIDES: Acquisition of Surface Light Fields
	PAPER: Better Optical Triangulation through Spacetime Analysis
	PAPER: 3D Photography using Shadows in Dual-Space Geometry
	PAPER: A Volumetric Method for Building Complex Models from Range Images
	__

	SESSION 2: 3D Scanning Using the Image-Based Visual Hull --- Leonard McMillan
	SLIDES: Image-Based Visual Hulls: Shape and Texture in a Single Low-Cost Package
	PAPER: Image-Based Visual Hulls
	PAPER: Creating and Rendering Image-Based Visual Hulls
	__

	SESSION 3: Acquisition of Light Field Data using Hand-Held Camera --- Marc Pollefeys
	SLIDES: Acquisition of Light Field Data using a Hand-Held Camera
	PAPER: Calibration of Hand-held Camera Sequences for Plenoptic Modeling
	PAPER: Visual Modeling with a Hand-held Camera
	__

	SESSION 4: Recovering Reflectance Models of Real Scenes from Photographs --- Yizhou Yu
	SLIDES: Recovering and Synthesizing Lighting Independent Appearance Models from Images
	PAPER: Inverse Global Illumination: Recovering Reflectance Models of Real Scenes from Photographs
	PAPER: Extracting Objects from Range and Radiance Images
	PAPER: Synthesizing Bidirectional Texture Functions for Real-World Surfaces
	__

	SESSION 5: Surface Light Fields for 3D Photography --- Daniel Wood
	SLIDES: Surface Light Fields for 3D Photography
	PAPER: Surface Light Fields for 3D Photography
	__

	SESSION 6: Point-sample Rendering for Visualization of Surface Light Fields --- Hanspeter Pfister
	SLIDES: Point-Sample Rendering for the Visualization of Surface Lightfields
	PAPER: Surface Splatting
	PAPER: Surfels: Surface Elements as Rendering Primitives
	__

	SESSION 7: Eigen-Texture Method for Compression and Synthesis of Reflectance Data --- Yoichi Sato
	SLIDES: Eigen-Texture Method for Object Re-Illumination Eigen-Texture Method for Object Re-Illumination
	PAPER: Eigen-Texture Method: Appearance Compression based on 3D Model
	PAPER: Object Shape and Reflectance Modeling from Observation
	__

	SESSION 8: Hardware-Accelerated Rendering of Surface Light Fields --- Radek Grzeszczuk
	SLIDES: Light Field Mapping: Hardware-Accelerated Rendering of Surface Light Fields
	NOTES: Light Field Mapping: Hardware-Accelerated Visualization of Surface Light Fields
	PAPER: The Lumigraph
	__

